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Human chromatin from a single cell if unpacked
and chained up: long

Human nucleus: scale in
diameter

Chromatin structure illustration
Picture from users.rcn.com
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Chromatin 3D Structure

DNA beads on the string, 10nm

Pictures from Wikipedia.com
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XERLLE Chromatin 3D Structure

Chromatin conformation capture technology (HiC)

HiC provides genome-wise all-to-all chromatin contact profiling

compared to the previous FISH (optical one-to-one), 3C (one-to-one)
and 4C (one-to-all), and ChIA-PET (targeted all-to-all).
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In Situ HIC

» Higher resolution, better insights.
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Figure 1. We Used In Situ Hi-C to Map over 15 Billion Chromatin Contacts across Nine Cell Types in Human and Mouse, Achieving 1 kb

in Human L Cells

Picture from Rao et al. Cell, 2014
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Topological domain (TD) identification

mESC cortex
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Structure Modeling

» Generating reasonable structure
decoys
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Structure based studies

» Structure clustering to find cell
states

Structure population

3 4 10,000

» Radius position and feature
association

Sample structure from population

» Proximity and feature association

Chromosome 1 pum
territories

Kalhor et al. Nature Biotech. 2011
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Chromatin 3D Structure

Chromatin features and radius position

17 Features

66 Features

GeneDensit, GeneExpre, EarlyRep,
lincRNA, Dnase, Pol2, Ctcf, H3k4mel,
H3k4me3, H3k27ac, H3k4me2, H3k79me2,
H3k9ac, H3k9me3, H4k20mel, H3k27me3,
H2az

GeneCount, GeneDensi, GeneExpre,
EarlyRep, lincRNA, Dnase, Pol2, Ctcf,
H3k4mel, H3k4me3, H3k27ac, H3k4me?2,
H3k79me2, H3k9ac, H3k9me3, H4k20mel,
H3k27me3, H2az, Bhlhe40c, Brcal, Cdp,
Cfos, Chdl, Chd2, Corest, Ctcf, E2t4, Ebf1,
Elk1, Erra, Gen$, Ikzfl, Input, Irf3, Jund,
Mafk, Max, Maz, Mxil, Nfe2, Nfkb, Nfya,
Nfyb, Nrfl, P300b, Pol2, Pol3, Rad2l,
Rfx5, Sin3, Smc3, Spt20, Srebpl, Srebp2,
Statl, Stat3, Tblrl, Tbp, Tr4, Usf2, Whip,
Yyl, Znf143, Znf274, Znt384, Zzz3

Red:

Histone Modification Markers

. TFs

Blue:

Others




Chromatin 3D Structure
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Cancerous translocation and chromatin structure

91 Map Translocation Datasets to Genome Coordinates
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3 Assess Signifiance by Permutation Testing

= Compare each set of translocations to permuted sets
* Compare each individual translocation to permuted regions

Engreitz et al. PLoS One, 2013
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hromatin 3D Structure
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« CTCF enriched in “hotspots”
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« Similar mutation type and « Pathway enrichment
flanking sequence

conservation in “hotspots” a
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Traditional cancer diagnosis
* Morphological appearance:
« Pathological section (golden standard)

Image from baidu.com Image from radiology.med.nyu.edu

« Gene or protein expression

WT MUT
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Liver Lung Cerebellum

Image from well.ox.ac.uk Image from sigmaaldrich.com
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Inside drives
Somatic point mutations
Insertions and deletions (INDELS)
Chromatin translocations
Copy number abnormalities

97L Trakcs LMS6 Trakcs Chromosome 4 Exome-SNV, DNA-SNV, SNP-CNV, DNASeq-CNV, GeneExp, Methy
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YEZAAYE DNN-based Cancer Typing
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Applications of deep neural network (DNN) learning
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The Author(s) BMC Bicinformatics 2016, 17(Suppl 171:476

DOI 10.1186/512859-016-1334-9 BMC B|O|nf0rmatlcs
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DeepGene: an advanced cancer type
classifier based on deep learning and
somatic point mutations

Yuchen Yuan'*, Yi Shi*"*, Changyang Li", Jinman Kim', Weidong Cai', Zeguang Han’ and David Dagan Feng'?

From The 27th International Conference on Genome Informatics
Shanghai, China. 3-5 October 2016
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Why CNA:?

* Links between aneuploidy and cancer have long
been recognized.

* CNA is the major form of chromosomal instability,
affecting a larger fraction of the genome in cancers.

* The technologies of profiling genome-wide CNV is
more developed than before, from DNA microarray
based to whole-genome DNA sequencmg based to
exome sequencing based. PN, I
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Data preprocessing
 The CNA data is first empirically clipped into the
interval [0, 10].

* The clipped data is then zero-padded at tail to have
the desired length that fits the input of the
subsequent neural networks.

* For 2D CNN, the CNA samples are then reshaped
into 176*176™1, just like single-layered images.
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1D CNN

Table 1. Architecture of our proposed 1D CNN.

Conv (s1ze. channel.

Layer Type Output size pad) Max pooling
mput in 32768%1*ch N/A N/A
convl CHHP 8192%1%32 3%1.32.1 4%]
conv2 cH+p 2048*1*%64 3*1.64. 1 4%]
conv3 cH+p 512%1*128 3*%1,128. 1 4%
conv4 CH+p 128%1%256 3*1, 256, 1 4%
convs CH+p 32%1%*512 3*%1,512. 1 4%]
convé C+r 1#1*4096 32%*1. 4096. 0 N/A
fc7 fo+r+d 1#1*4096 1%1, 4096. 0 N/A
fc8 fc 1%1%25 1*%1.25.0 N/A
loss smtlog 1*1 N/A N/A

Annotations - in: input laver; ¢: convolutional layer; r: ReLU layer; p: pooling layer,
fe. fully connected laver,; d: dropout laver, sm. softmax laver, log: log loss laver; ch:
number of input channels (depending on whether the HiC data is used).




Y EXAAY

SHANGHAI JIAO TONG UNIVERSITY

2D CNN

DNN-based Cancer Typing

Table 2. Architecture of our proposed 2D CNN

Conv (s1ze. channel.

Layer Type Output size pad) Max pooling
mput in 176*176*ch N/A N/A
convl CH+p 88*88*32 3%3,32. 1 2%2
conv2 CH+p 44*44%64 3%3,64. 1 2%2
conv3 CHHP 22%22*128 3%3128.1 2%2
conv4 CHHp 11*11%256 3%3.256. 1 2%2
convs c+r 1*¥1*1024 11#%11, 1024, 0 N/A

fc6 fc+r+d 1*¥1*1024 1#1.1024. 0 N/A

fc7 fc 1#1%25 1#1,25.0 N/A
loss sm+log 1*] N/A N/A

—
Annotations - in: input layver, c: convolutional layver; r: ReLU layer, p: pooling laver;
fe: fully connected laver; d: dropout laver; sm: softmax laver; log: log loss layer, ch:
number of input channels (depending on whether the HiC data is used).
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Implementation details

* Both the 1D CNN and the 2D CNN are implemented
in Python under the Caffe framework, which is an
open source framework for CNN training and testing.

 The machine used for our experiments is a PC with
Intel 6-Core i7-5820K 3.3GHz CPU, 64GB RAM,
GeForce GTX TITAN X 12GB GPU, and 64-bit
Ubuntu 14.04.3 LTS.

« Software dependencies include CUDA 8.0 and
cuDNN 5.1.
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Proposed method in different design options
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Fig. 1. Performances of our proposed method with different design options. (a) With different
HiC data configurations. From left to right: baseline model (2D CNN). baseline with hESC
only: baseline with IMR90 only:; baseline with both types of HiC data. The last configuration
leads to the optimal performance. (b) With different network and HiC combinations. From left
to right: 1D CNN without HiC data: 1D CNN with HiC data: 2D CNN without HiC data: 2D
CNN with HiC data. The last configuration leads to the optimal performance.
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Other classifiers

Table 3. Evaluation of SVM with different kernel types.

Kernel Linear Polynomial RBF
Accuracy 0.317 0.322 0.275

Table 4. Evaluation of KNN with different number of neighbors and p value.

p \n_neighbors 3 4 5 6 7
1 0.257 0.259 0.262 0.265 0.266
2 0.263 0.273 0.283 0.279 0.277
3 0.254 0.259 0.264 0.258 0.262

Table 5. Evaluation of NB with different data distribution assumptions

Distribution Bernoulli Multinomial Gaussian
Accuracy 0.161 0.238 0.139
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Comparing with other classifiers

0.6 T T T T 0.6
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[5] A

=
5]
T

o1 Q1f

DeepCMA S5VM KMNN NBE DespCMA S5VM EMMN NB

(@) (b)

Fig. 2. Performances of our proposed method against three widely adopted data classifiers. (a)
The comparison methods use raw CNA input data (without HiC). From left to right: Our meth-
od, SVM (polynomual kernel), KNN (number of neighbors = 5 and p = 2) and NB (multinomual
distribution). Our method shows significant advantage against the comparison methods. (b) The
comparison methods use both CNA and HiC as mput data. From left to right: Our method.
SVM (polynomial kernel). KNN (number of neighbors = 5 and p = 2) and NB (multinomial
distribution). Our method shows even greater advantage against the comparison methods.
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Further investigation

 Integrating heterogeneous mutation data together,
e.g. SNV, INDEL, CNV, translocation

« What feature (gene) combinations contribute to
better prediction accuracy? Why?

How this can help real diagnosis?

* Applying to CTC or ctDNA for early diagnosis,
subtyping, locating.




Prof. Tom Cai

=) ey .

. .
& EiBiklIx
FENHRFRAERARED
THE UNIVERSITY OF N s F c www.stcsm.gov.cn

SYDNEY National Natural Science

USyd-SJTU Joint Research Alliance for Foundation of China
Translational Medicine




Y EXAAY

SHANGHAI JIAO TONG UNIVERSITY

uestions & Comments?

T Th

vES

Thank you!

2017.06.21

26 DAYS LATER

y
“~EX_MACHINA

THERE 15 MTTHING MORE HUMAN THAN THE WILL TO SURVIVE
COMING SOON




