

上海交通大学
SHANGHAI JIAO TONG UNIVERSITY

Chromatin 3D Structure and Cancer Typing via Deep Learning

石毅 (Shi, Yi)

2017.06.21

Center for Systems Biomedicine
Shanghai Jiao Tong University

THE UNIVERSITY OF
SYDNEY

USyd-SJTU Joint Research Alliance
for Translational Medicine

Outline

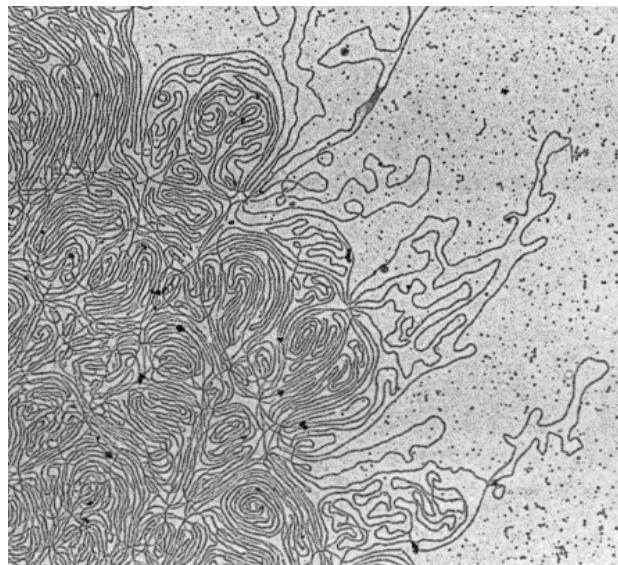
- Chromatin 3D Structure
- DNN-based Cancer Typing
- Discussion

上海交通大学
SHANGHAI JIAO TONG UNIVERSITY

Chromatin 3D Structure

Chromatin 3D Structure

- Human chromatin from a single cell if unpacked and chained up: **~2 meters** long
- Human nucleus: **micron meter (10^{-6} m)** scale in diameter

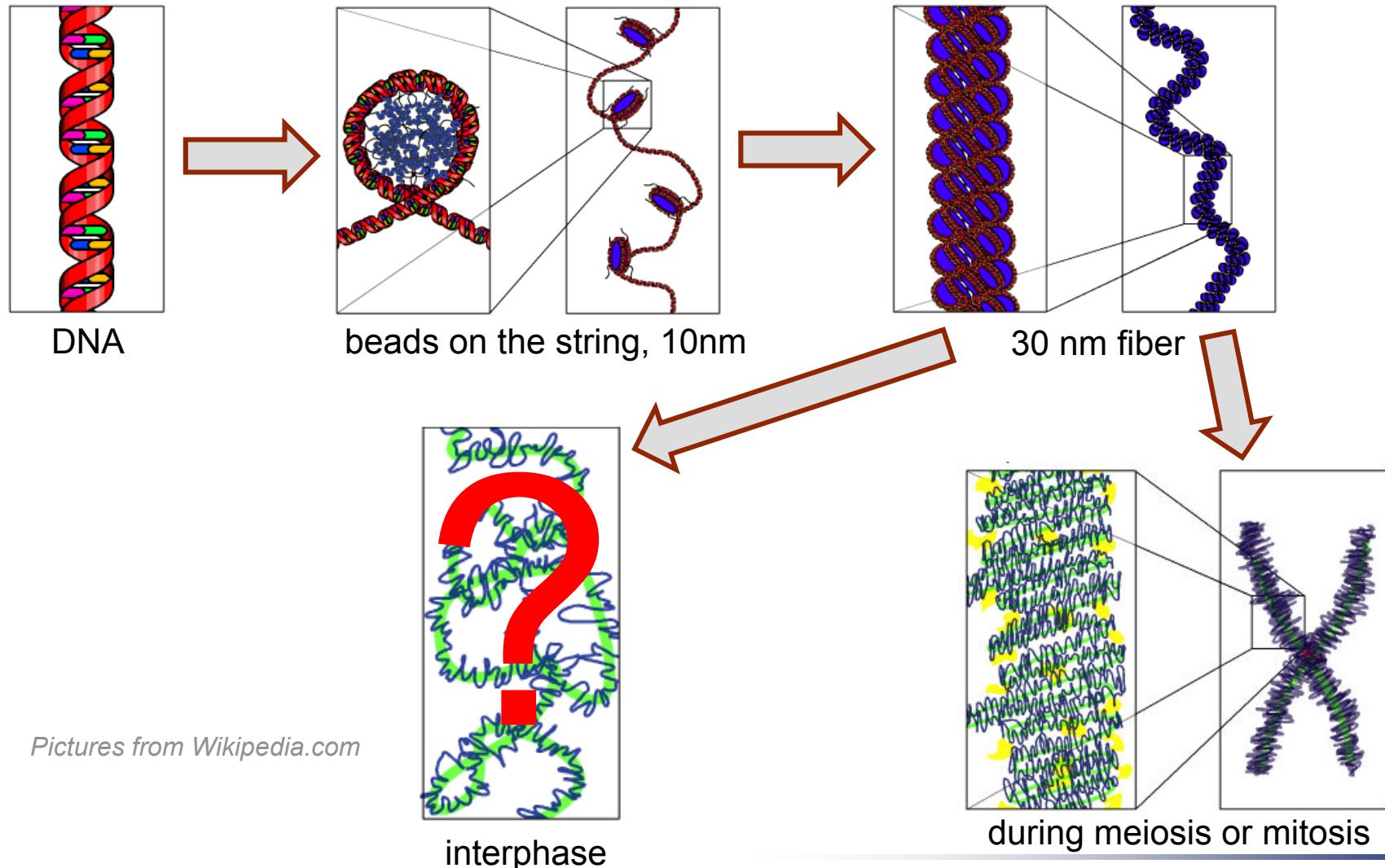


Chromatin structure illustration

Picture from users.rcn.com

Chromatin 3D Structure

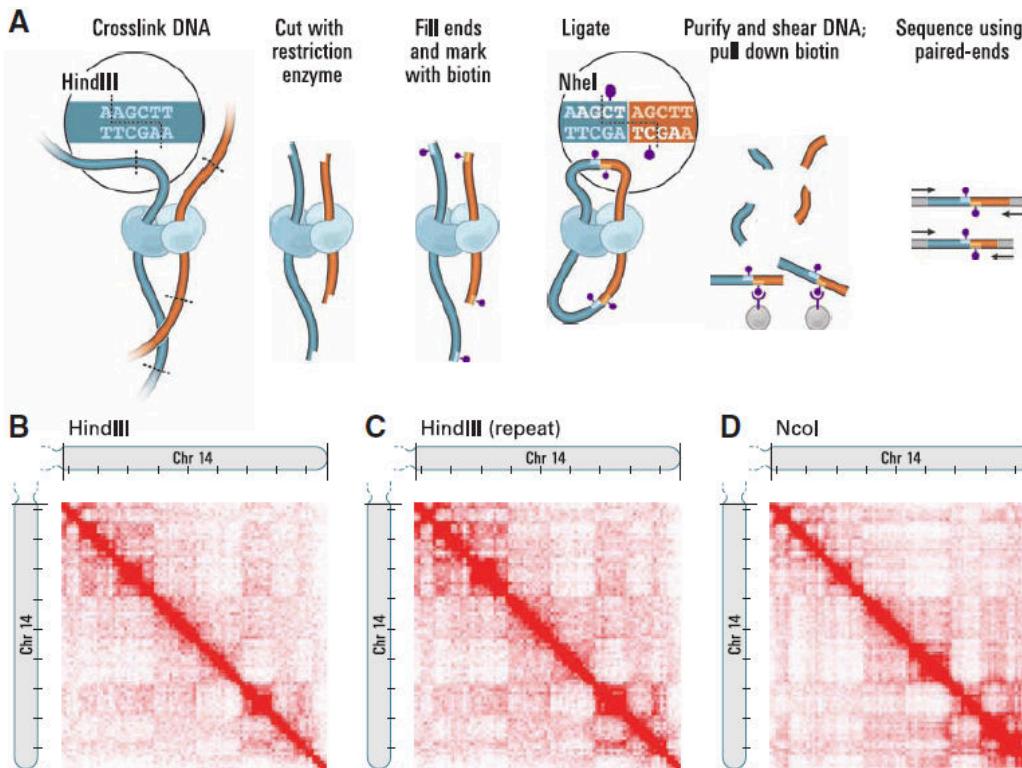
From DNA to chromosome



Chromatin 3D Structure

① Chromatin conformation capture technology (HiC)

- HiC provides genome-wise **all-to-all** chromatin contact profiling compared to the previous FISH (optical one-to-one), 3C (one-to-one) and 4C (one-to-all), and ChIA-PET (targeted all-to-all).



Lieberman-Aiden, E. et al. *Science*, 2009

Insights:

- Chromatin territories exist.
- Genome partitioned into 2 compartments, active and inactive, with high intra-compartment interaction and low inter-compartment interaction.
- The 2 compartment partitioning is correlated to epigenetic signals.
- There are more genes in active compartment and those genes are more active.

Chromatin 3D Structure

④ In Situ HiC

- Higher resolution, better insights.

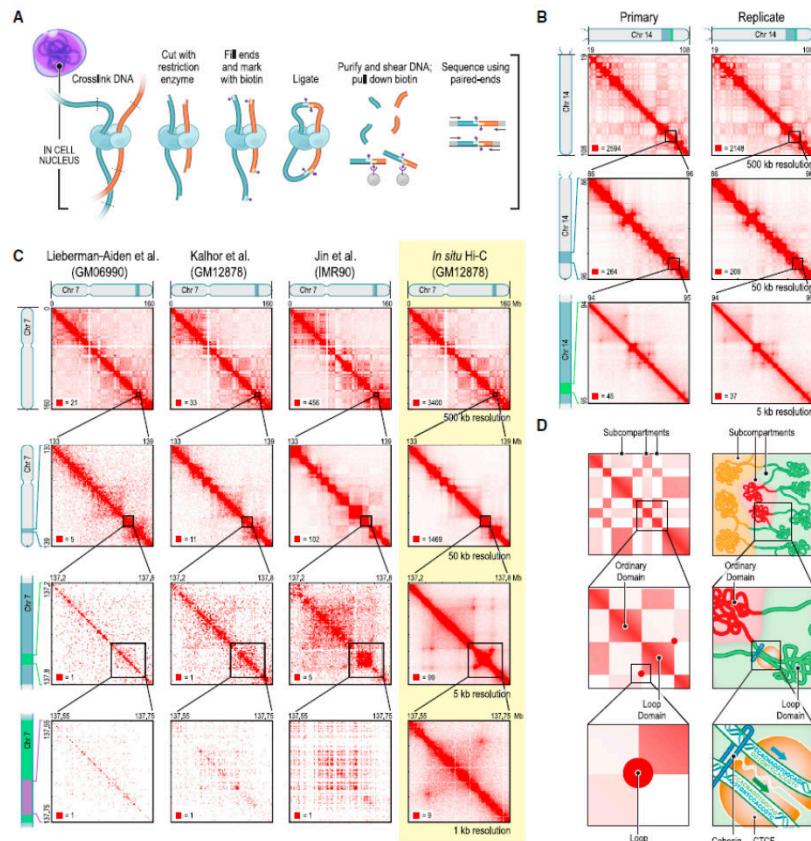


Figure 1. We Used In Situ Hi-C to Map over 15 Billion Chromatin Contacts across Nine Cell Types in Human and Mouse, Achieving 1 kb Resolution in Human Lymphoblastoid Cells

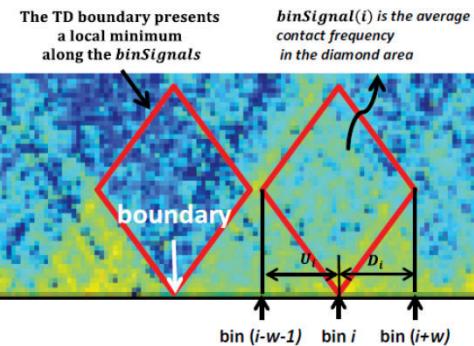
Picture from Rao et al. Cell, 2014

Insights:

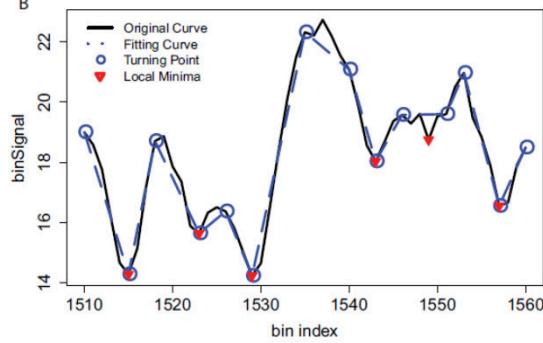
- Six types of chromatinins discovered.
- More certain about detailed looping.
- TAD and replication origin which is correlated to cancerous mutations.

Topological domain (TD) identification

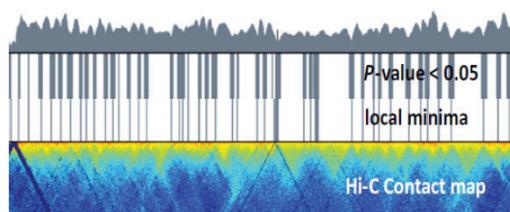
A



B

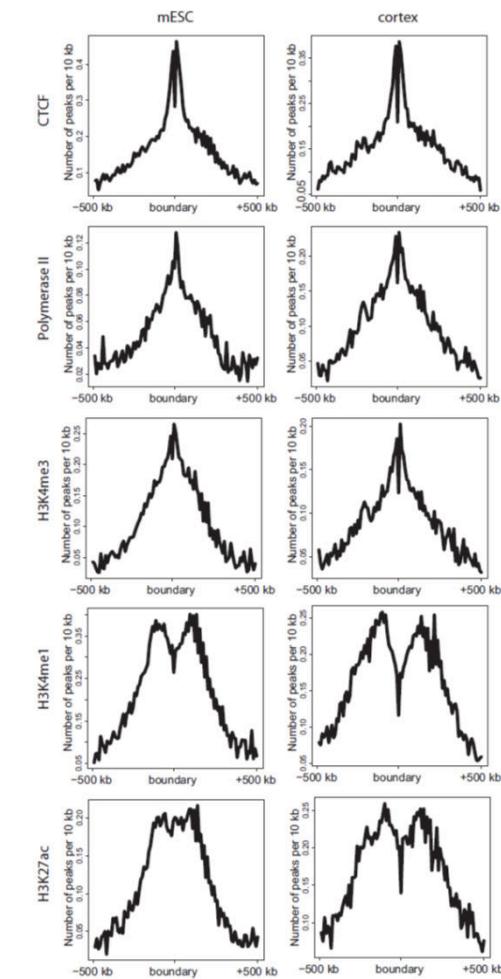


C



Curving Fitting Algorithm

```
1:  $P_{start} = \text{signal start}, P_{end} = \text{signal end};$ 
2:  $F_j = 0, F_{j-1} = 0;$ 
3:  $P_j = P_{start+2^j};$ 
4: Do while  $P_{start} \leq P_{end}$  and  $P_j \leq P_{end}$ 
5: // line( $P_a, P_b$ ) = a line connecting two points  $P_a$  and  $P_b$ 
6:  $L_j = \text{length of line}(P_{start}, P_j)$ 
7:  $E_j = \text{sum of distance error } (P_k, \text{line}(P_{start}, P_j))$ 
8: where  $P_k$  are any points between  $P_{start}$  and  $P_j$ 
9:  $F_j = L_j - E_j$ 
10: if ( $F_j < F_{j-1}$ )
11: Set  $P_{j-1}$  as turning point
12:  $P_{start} = P_{j-1}; P_j = P_{start+2^j}; F_{j-1} = 0$ 
13: else
14:  $F_{j-1} = F_j; P_j = P_{j+1};$ 
15: endif
16: loop
17:
```



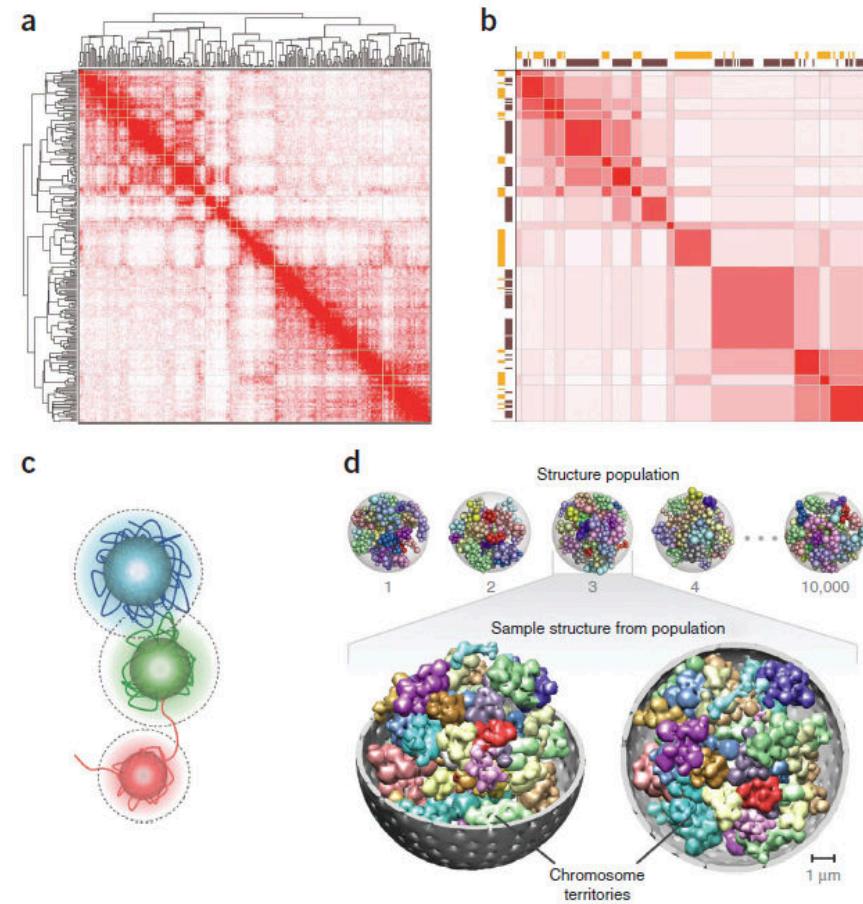
Chromatin 3D Structure

Structure Modeling

- Generating reasonable structure decoys

Structure based studies

- Structure clustering to find cell states
- Radius position and feature association
- Proximity and feature association



Kalhor et al. Nature Biotech. 2011

④ Chromatin features and radius position

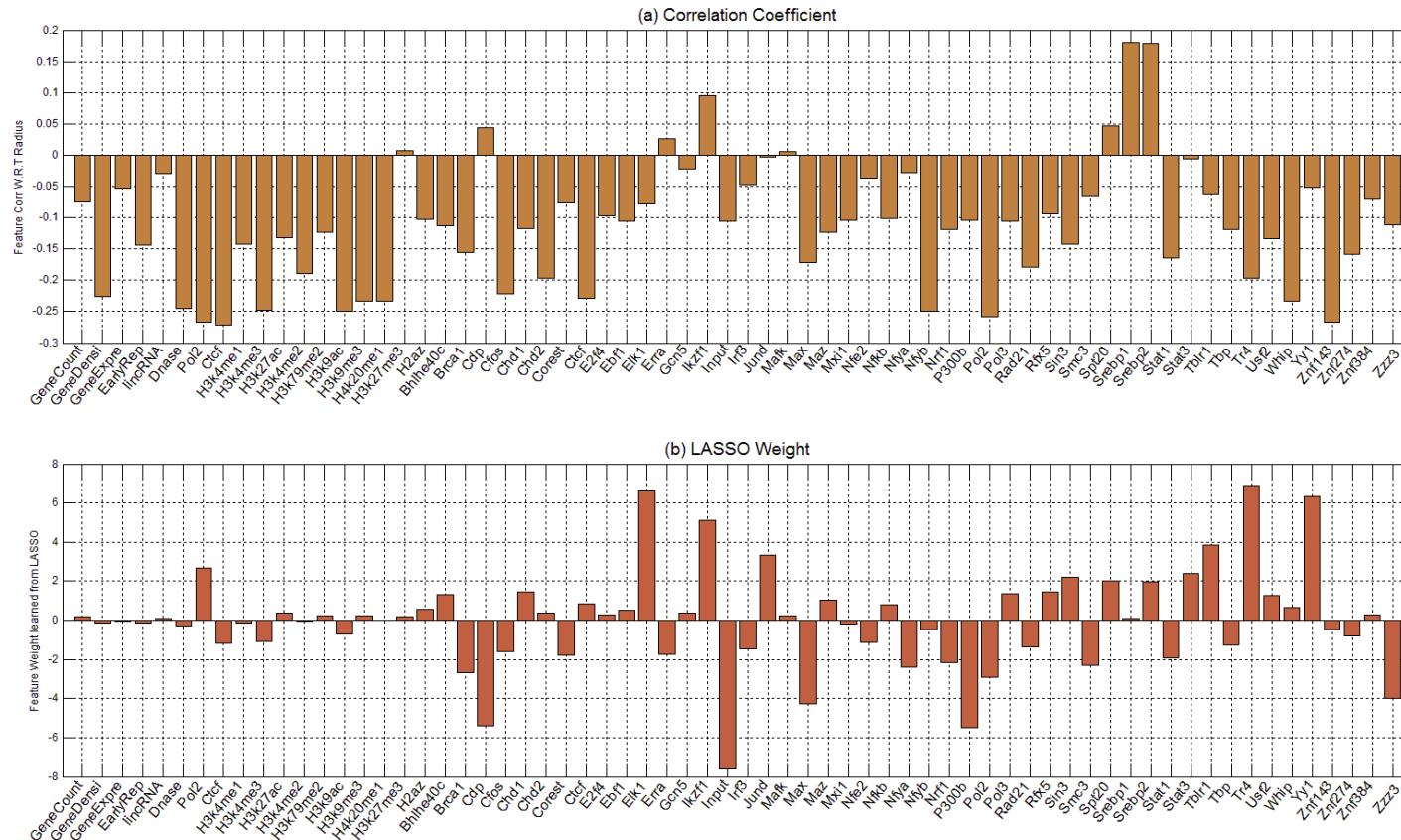
17 Features	66 Features
GeneDensi, GeneExpre, EarlyRep, lincRNA, Dnase, Pol2, Ctcf, H3k4me1, H3k4me3, H3k27ac, H3k4me2, H3k79me2, H3k9ac, H3k9me3, H4k20me1, H3k27me3, H2az	GeneCount, GeneDensi, GeneExpre, EarlyRep, lincRNA, Dnase, Pol2, Ctcf, H3k4me1, H3k4me3, H3k27ac, H3k4me2, H3k79me2, H3k9ac, H3k9me3, H4k20me1, H3k27me3, H2az, Blhhe40c, Brca1, Cdp, Cfos, Chd1, Chd2, Corest, Ctcf, E2f4, Ebfl, Elk1, Erra, Gcn5, Ikzf1, Input, Irf3, Jund, Mafk, Max, Maz, Mxi1, Nfe2, Nfkb, Nfyb, Nrf1, P300b, Pol2, Pol3, Rad21, Rfx5, Sin3, Smc3, Spt20, Srebp1, Srebp2, Stat1, Stat3, Tblr1, Tbp, Tr4, Usf2, Whip, Yy1, Znf143, Znf274, Znf384, Zzz3

Red: Histone Modification Markers

Green: TFs

Blue: Others

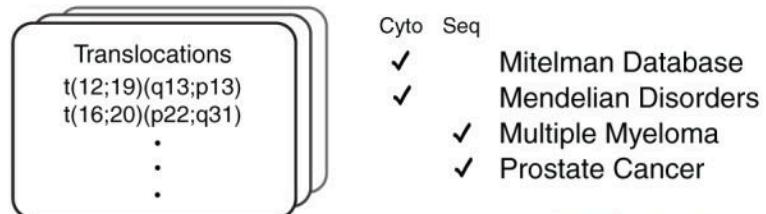
Chromatin features and radius position



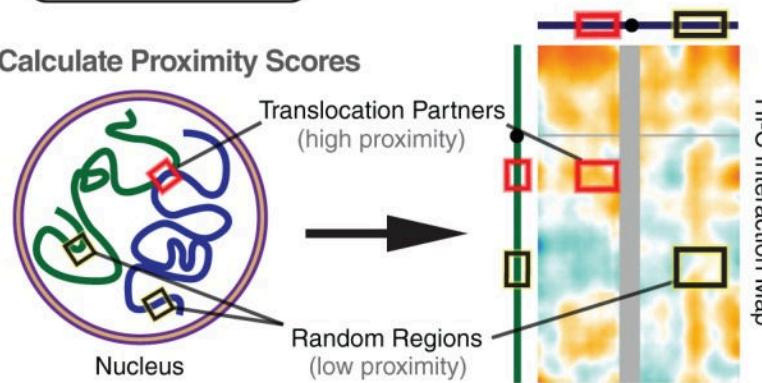
Chromatin 3D Structure

④ Cancerous translocation and chromatin structure

1 Map Translocation Datasets to Genome Coordinates



2 Calculate Proximity Scores

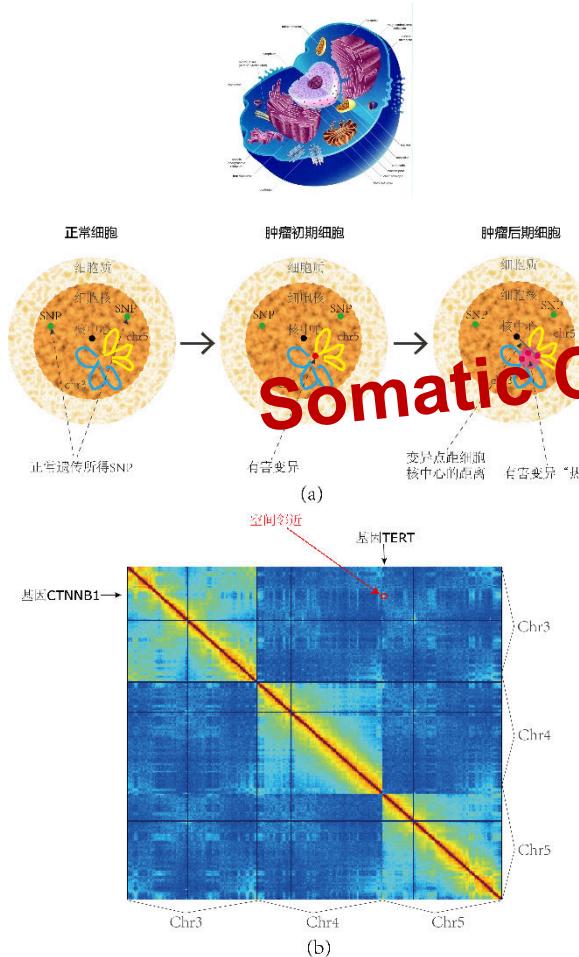
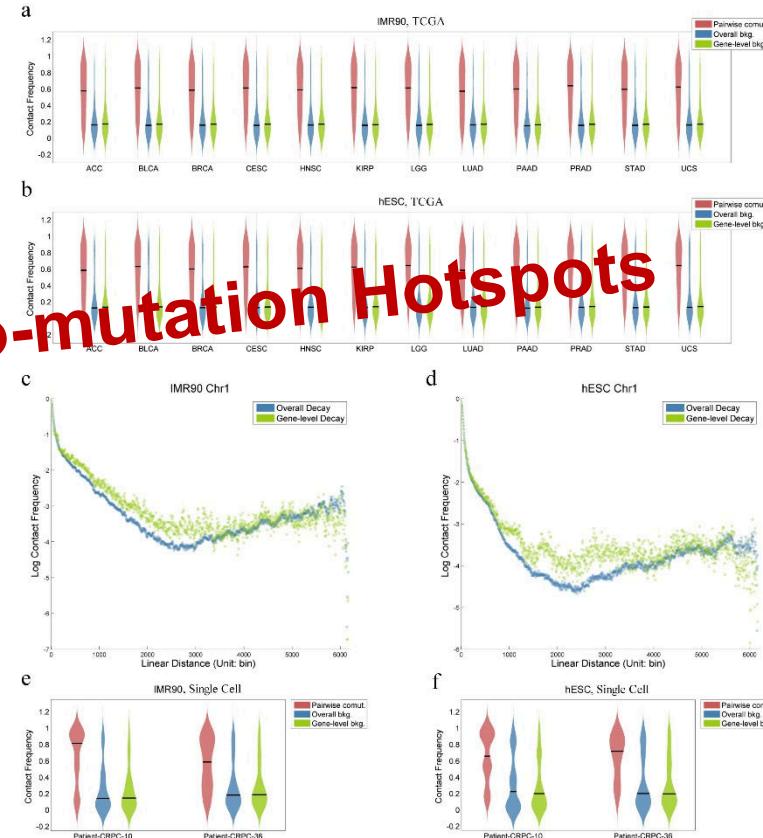


3 Assess Significance by Permutation Testing

- Compare each set of translocations to permuted sets
- Compare each individual translocation to permuted regions

Engreitz et al. PLoS One, 2013

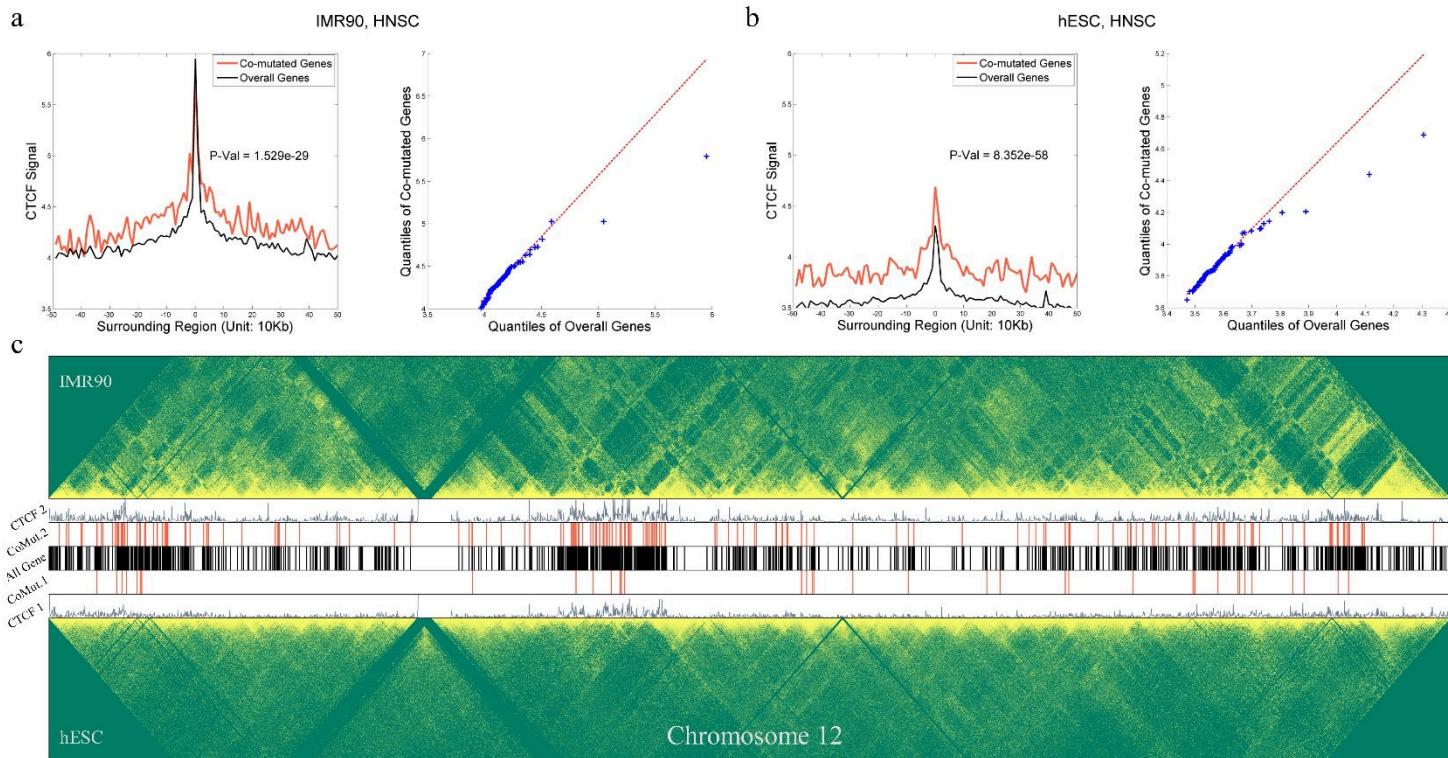
Chromatin 3D Structure



Shi. et al. *Scientific Reports*, 2016

Chromatin 3D Structure

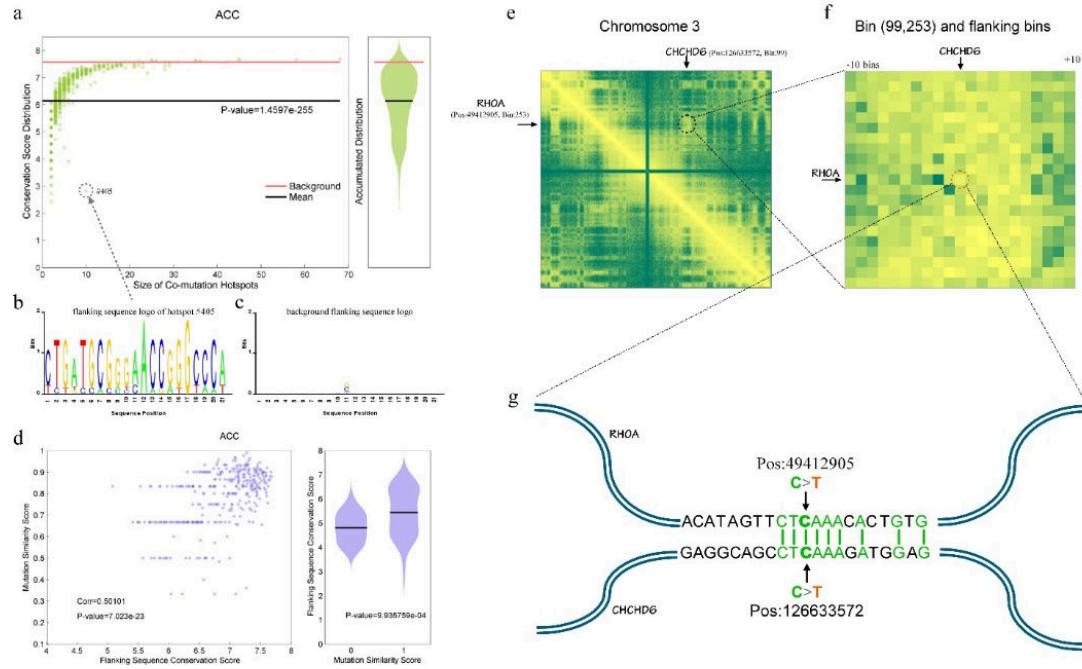
- CTCF enriched in “hotspots”



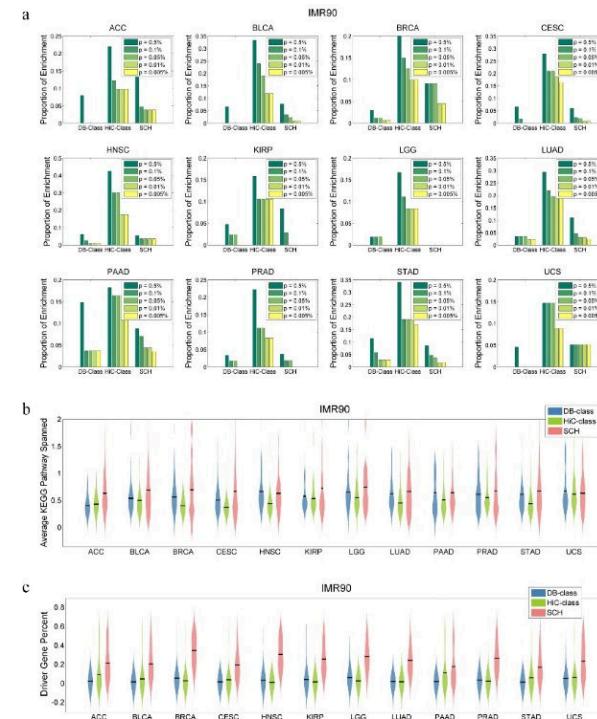
Shi. et al. *Scientific Reports*, 2016

Chromatin 3D Structure

- Similar mutation type and flanking sequence conservation in “hotspots”



- Pathway enrichment



上海交通大学
SHANGHAI JIAO TONG UNIVERSITY

DNN-based Cancer Typing

● Traditional cancer diagnosis

- Morphological appearance:
 - Pathological section (golden standard)
 - Imaging techniques

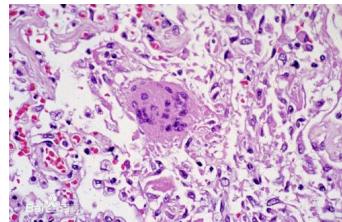


Image from baidu.com

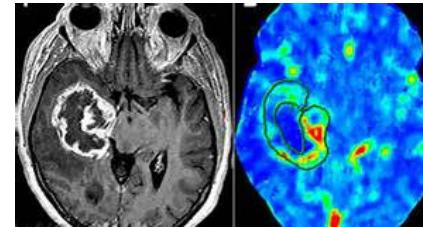


Image from radiology.med.nyu.edu

- Gene or protein expression

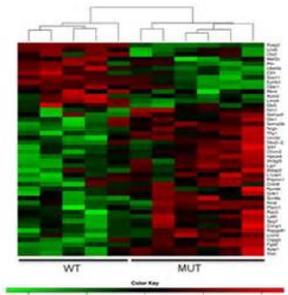


Image from well.ox.ac.uk

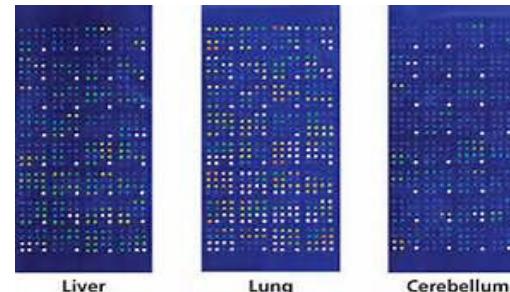
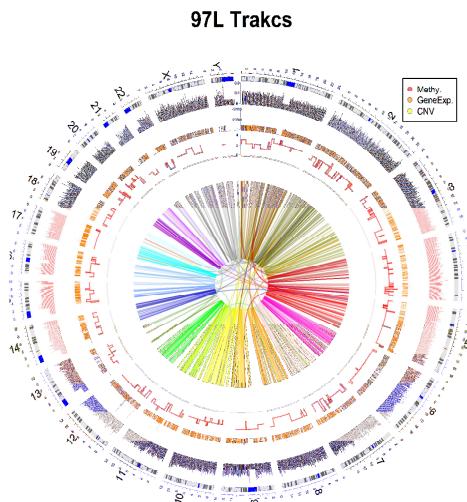
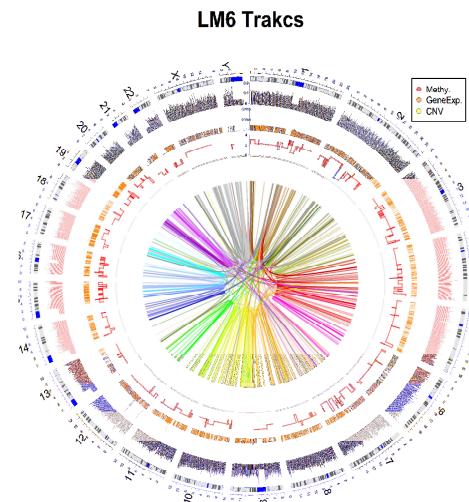
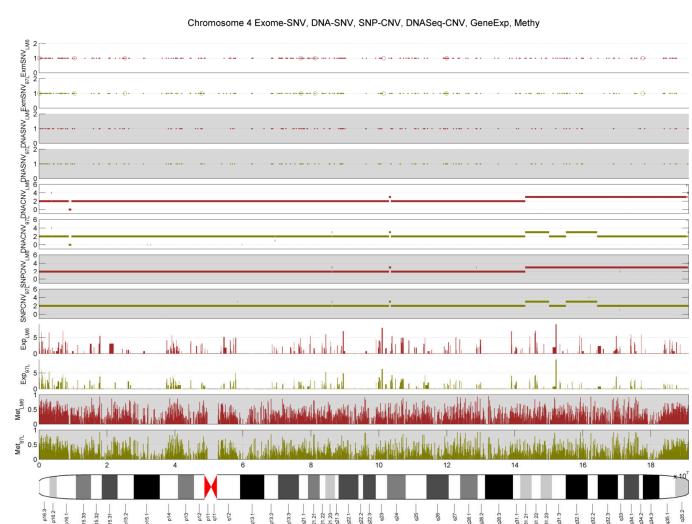


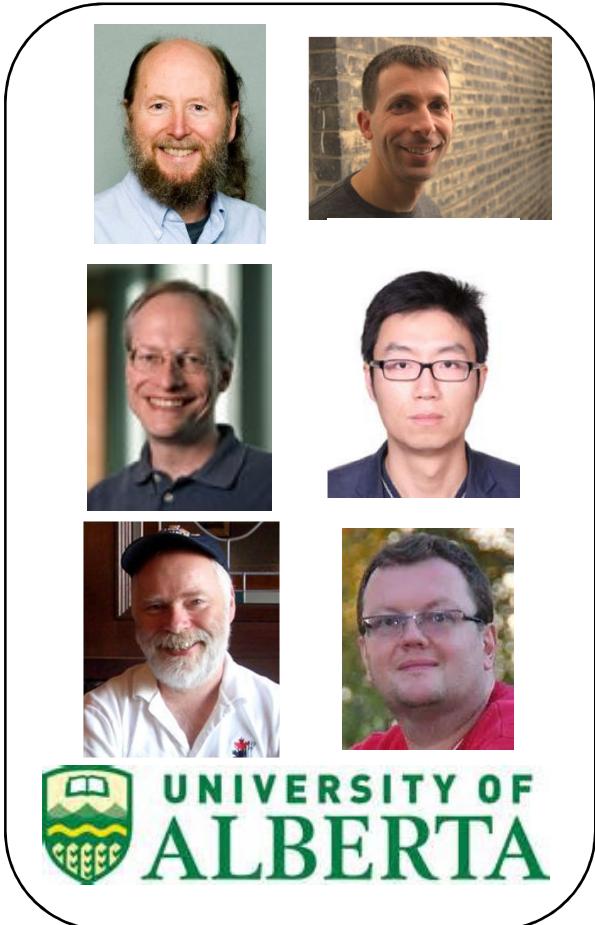
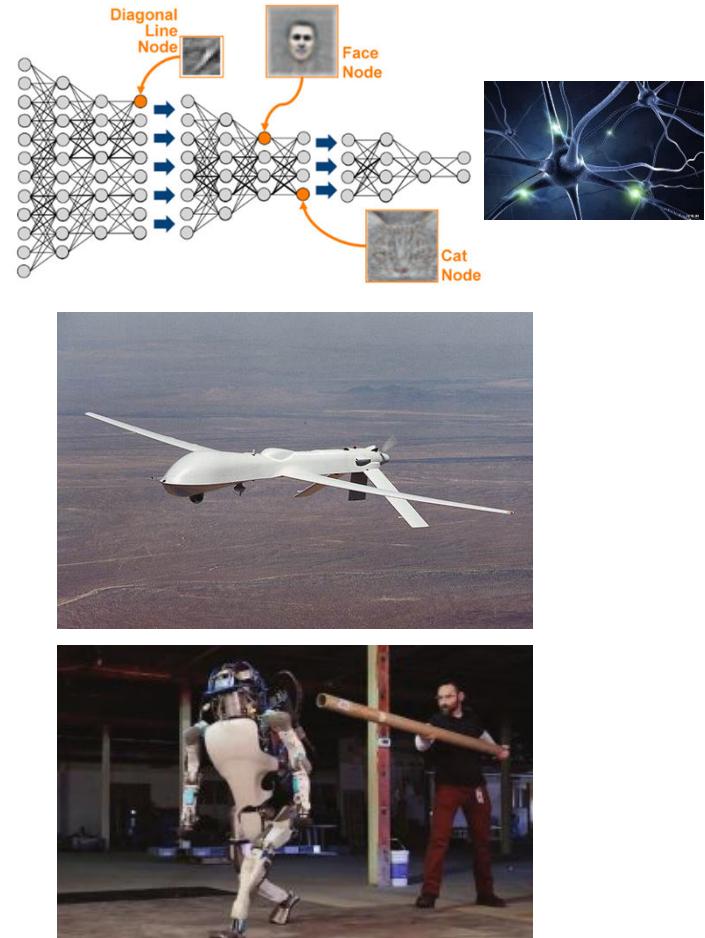
Image from sigmaaldrich.com

Inside drives

- Somatic point mutations
- Insertions and deletions (INDELS)
- Chromatin translocations
- Copy number abnormalities



DNN-based Cancer Typing



Applications of deep neural network (DNN) learning

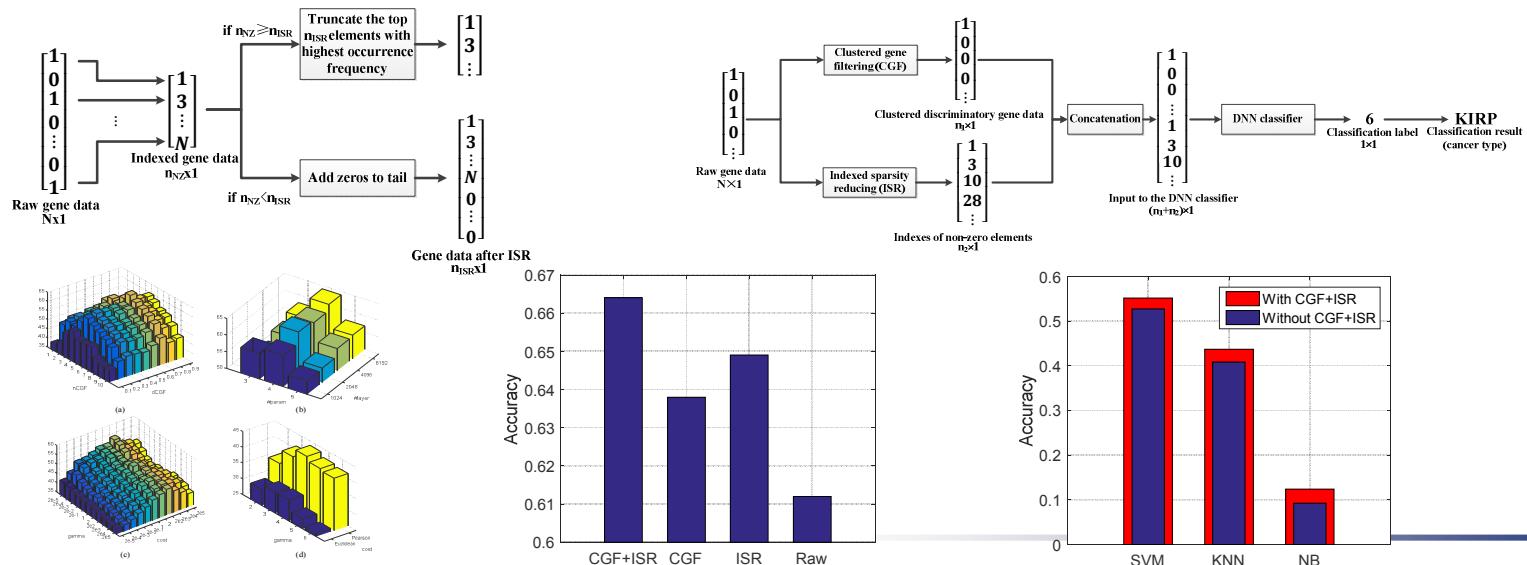
RESEARCH

Open Access

DeepGene: an advanced cancer type classifier based on deep learning and somatic point mutations

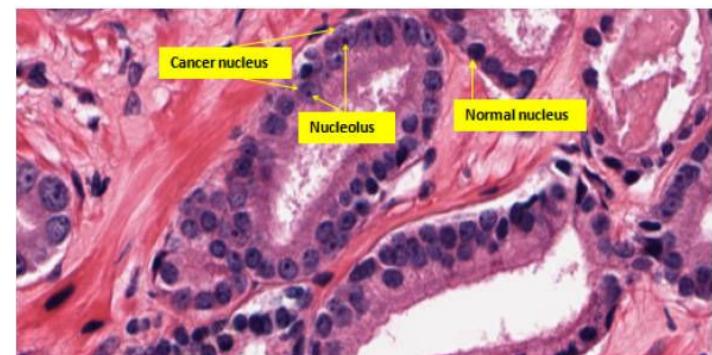
Yuchen Yuan^{1,2†}, Yi Shi^{2*†}, Changyang Li¹, Jinman Kim¹, Weidong Cai¹, Zeguang Han² and David Dagan Feng^{1,2}

From The 27th International Conference on Genome Informatics
Shanghai, China. 3-5 October 2016



① Why CNA:?

- Links between aneuploidy and cancer have long been recognized.
- CNA is the major form of chromosomal instability, affecting a larger fraction of the genome in cancers.
- The technologies of profiling genome-wide CNV is more developed than before, from DNA microarray based to whole-genome DNA sequencing based to exome sequencing based.



Picture from biometrics.cse.msu.edu

④ Data preprocessing

- The CNA data is first empirically clipped into the interval $[0, 10]$.
- The clipped data is then zero-padded at tail to have the desired length that fits the input of the subsequent neural networks.
- For 2D CNN, the CNA samples are then reshaped into $176*176*1$, just like single-layered images.

④ 1D CNN

Table 1. Architecture of our proposed 1D CNN.

Layer	Type	Output size	Conv (size, channel, pad)	Max pooling
input	in	32768*1*ch	N/A	N/A
conv1	c+r+p	8192*1*32	3*1, 32, 1	4*1
conv2	c+r+p	2048*1*64	3*1, 64, 1	4*1
conv3	c+r+p	512*1*128	3*1, 128, 1	4*1
conv4	c+r+p	128*1*256	3*1, 256, 1	4*1
conv5	c+r+p	32*1*512	3*1, 512, 1	4*1
conv6	c+r	1*1*4096	32*1, 4096, 0	N/A
fc7	fc+r+d	1*1*4096	1*1, 4096, 0	N/A
fc8	fc	1*1*25	1*1, 25, 0	N/A
loss	sm+log	1*1	N/A	N/A

Annotations - in: input layer; c: convolutional layer; r: ReLU layer; p: pooling layer; fc: fully connected layer; d: dropout layer; sm: softmax layer; log: log loss layer; ch: number of input channels (depending on whether the HiC data is used).

2D CNN

Table 2. Architecture of our proposed 2D CNN

Layer	Type	Output size	Conv (size, channel, pad)	Max pooling
input	in	176*176*ch	N/A	N/A
conv1	c+r+p	88*88*32	3*3, 32, 1	2*2
conv2	c+r+p	44*44*64	3*3, 64, 1	2*2
conv3	c+r+p	22*22*128	3*3, 128, 1	2*2
conv4	c+r+p	11*11*256	3*3, 256, 1	2*2
conv5	c+r	1*1*1024	11*11, 1024, 0	N/A
fc6	fc+r+d	1*1*1024	1*1, 1024, 0	N/A
fc7	fc	1*1*25	1*1, 25, 0	N/A
loss	sm+log	1*1	N/A	N/A

Annotations - in: input layer; c: convolutional layer; r: ReLU layer; p: pooling layer; fc: fully connected layer; d: dropout layer; sm: softmax layer; log: log loss layer; ch: number of input channels (depending on whether the HiC data is used).

● Implementation details

- Both the 1D CNN and the 2D CNN are implemented in Python under the Caffe framework, which is an open source framework for CNN training and testing.
- The machine used for our experiments is a PC with Intel 6-Core i7-5820K 3.3GHz CPU, 64GB RAM, GeForce GTX TITAN X 12GB GPU, and 64-bit Ubuntu 14.04.3 LTS.
- Software dependencies include CUDA 8.0 and cuDNN 5.1.

- Proposed method in different design options

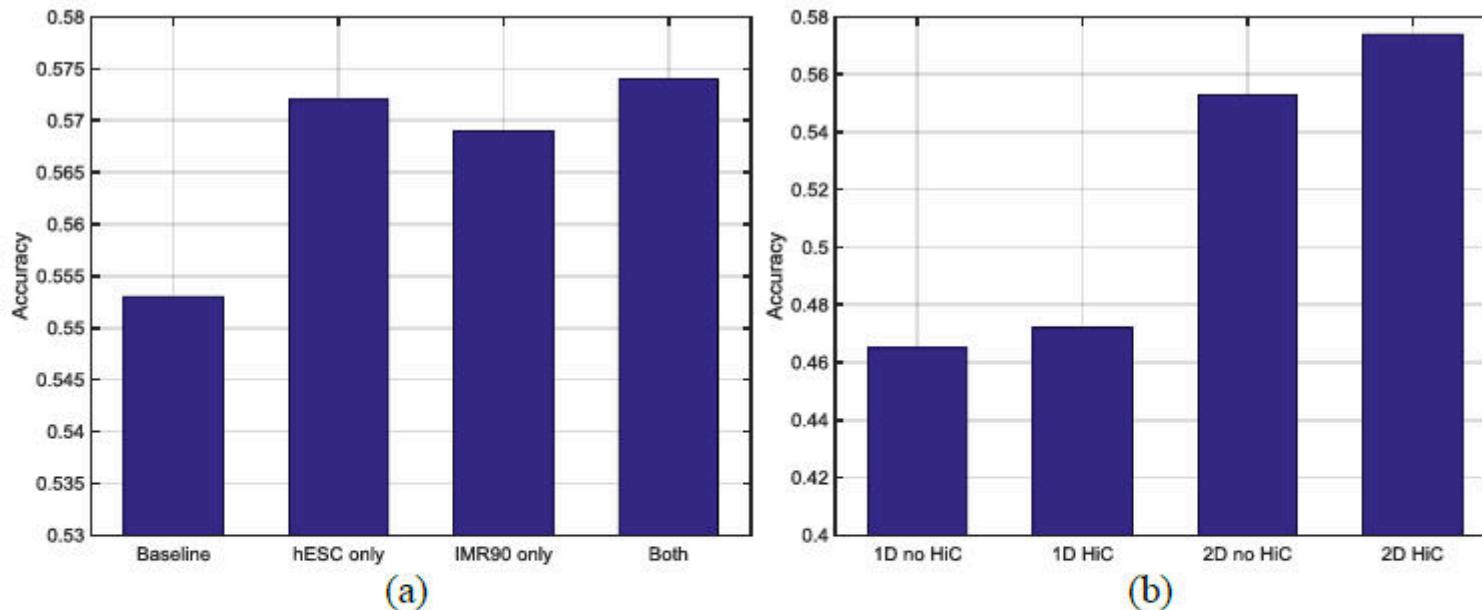


Fig. 1. Performances of our proposed method with different design options. (a) With different HiC data configurations. From left to right: baseline model (2D CNN); baseline with hESC only; baseline with IMR90 only; baseline with both types of HiC data. The last configuration leads to the optimal performance. (b) With different network and HiC combinations. From left to right: 1D CNN without HiC data; 1D CNN with HiC data; 2D CNN without HiC data; 2D CNN with HiC data. The last configuration leads to the optimal performance.

Other classifiers

Table 3. Evaluation of SVM with different kernel types.

Kernel	Linear	Polynomial	RBF
Accuracy	0.317	0.322	0.275

Table 4. Evaluation of KNN with different number of neighbors and p value.

p \ n_neighbors	3	4	5	6	7
1	0.257	0.259	0.262	0.265	0.266
2	0.263	0.273	0.283	0.279	0.277
3	0.254	0.259	0.264	0.258	0.262

Table 5. Evaluation of NB with different data distribution assumptions

Distribution	Bernoulli	Multinomial	Gaussian
Accuracy	0.161	0.238	0.139

Comparing with other classifiers

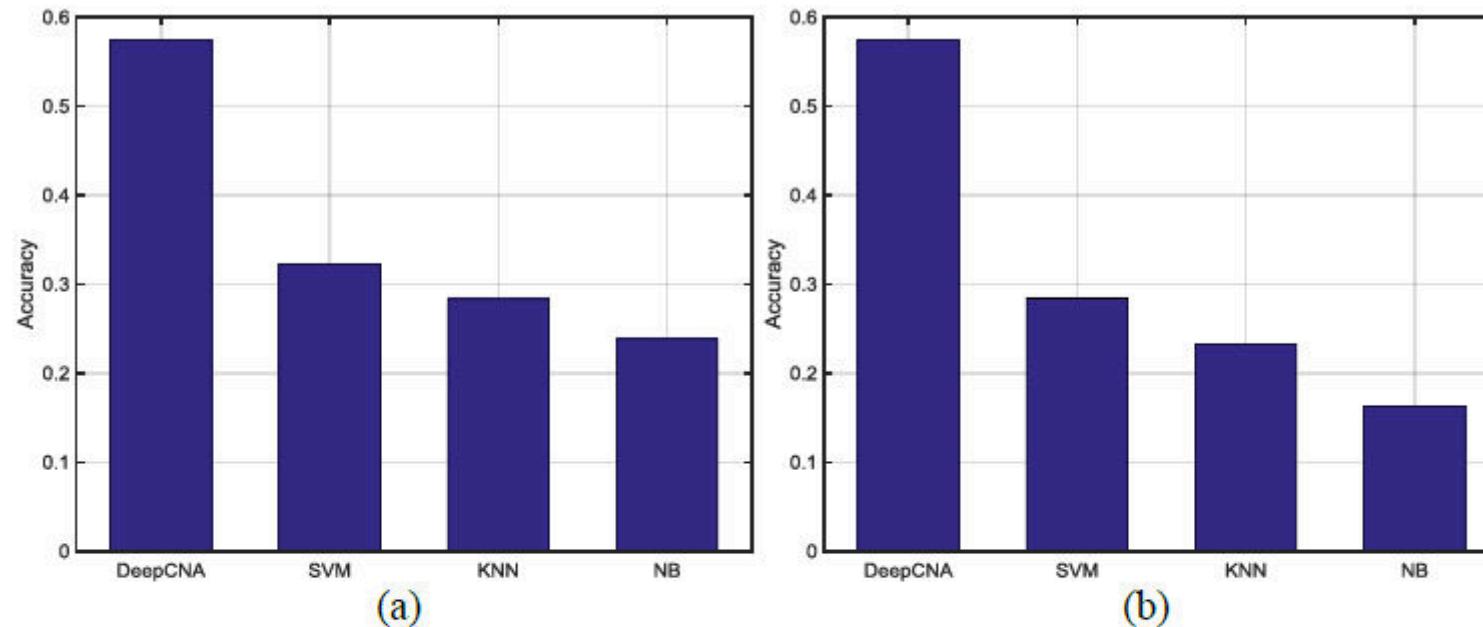


Fig. 2. Performances of our proposed method against three widely adopted data classifiers. (a) The comparison methods use raw CNA input data (without HiC). From left to right: Our method, SVM (polynomial kernel), KNN (number of neighbors = 5 and $p = 2$) and NB (multinomial distribution). Our method shows significant advantage against the comparison methods. (b) The comparison methods use both CNA and HiC as input data. From left to right: Our method, SVM (polynomial kernel), KNN (number of neighbors = 5 and $p = 2$) and NB (multinomial distribution). Our method shows even greater advantage against the comparison methods.

Discussion

➊ Further investigation

- Integrating heterogeneous mutation data together, e.g. SNV, INDEL, CNV, translocation
- What feature (gene) combinations contribute to better prediction accuracy? Why?

➋ How this can help real diagnosis?

- Applying to CTC or ctDNA for early diagnosis, subtyping, locating.

Acknowledgement

Prof. Ze-guang Han

Prof. David Feng

Dr. Yuchen Yuan & I

Prof. Tom Cai

USyd-SJTU Joint Research Alliance for
Translational Medicine

National Natural Science
Foundation of China

上海市科学技术委员会主办
www.stcsm.gov.cn

浦江人才计划
Pujiang Scholar

Questions & Comments?

고맙습니다!

ありがとう!

谢谢!

Thank you!

2017.06.21

