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Time-Series

* A series of values of variables taken in successive
periods in time

* Time points

* Sampling intervals (constant/inconstant)



Gene expression is highly dynamic

* Biological processes are highly dynamic and are
observed through the change of gene expressions

* To understand the molecular biological dynamics of
specific biological process, gene expression must be
observed at the most crucial time points

* A series of such gene expression snapshots is
defined as Time-Series data



Power of Time Series Data Analysis

e Capture the molecular biological dynamics to
understand the model of specific biological processes
involved with transient expression change

* Transient expression change is observed in
* developmental or cycling processes
e perturbation-response experiments

* Such information is important for understanding
* the sequence of events (activation of genes = causality)
* detect temporal pattern of a response
* the dynamic use of transcriptional networks



Exponentially increasing Time Series data

e Statistics of available time series in GEO

* Only recently, the number of time series NGS data are starting to increase
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Biological Challenges

* Synchronization

e Duration and sampling rate
* Developmental and cyclic systems
* For cyclic processes, it should be uniform and cover multiple cycles

* For developmental processes, there are two approaches

* Morphological markers

* Vary sampling rate during the life cycle according to the expected changes in gene
expression (one-hour intervals during embryonic stages, multi-day intervals during
adulthood in the D. melanogaster)

* Perturbation-response experiments
* Early time points are more important than later time points

* Sampling density
e If interest is in identifying genes that take part in dynamics, more time
points with fever replicates

» If differentially expressed genes are important at certain time points, fewer
time points with more replicates



Computation Challenges

* A wide range of aspects for analysis (each being very

difficult)

* Single DEG detection
* DEG clustering

* Network

e Pathway

e Data is diverse, large and complex
* Microarray, NGS (normalization issues)
* High dimensional (Gene-Time-Condition)
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Timeline of Time-Series (TS) analysis milestones

* TRAP, TimeClip (TS Pathway analysis)
* DyNB, next mSigPro (RNA-seq TS analysis)

Microarry TS DEG tools TE centric TS e
analysis (DREM)
el T piclusterin TimesVector triclusterin
analysis s Microarray TS Gelr\]etRegUIJatOI’v g
masSigPro etwor
H H H R
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98’
First TS DEG analysis

First Triclustering algorithm,

Spline based analysis
Ebseg-hmm

SAM DEG tools (Bayesian analysis)
Bayesian Estimation of
Temporal Regulation

OPTricluster triclustering tool
(microarray)
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Background:

Biological Pathway

* An ordered series of molecular events that leads to a new
molecular product, or a change in a cellular state

1.1 Carbohydrate metabolism
Glycolysis / Gluconeogenesis
Citrate cycle (TCA cycle)
Pentose phosphate pathway
Pentose and glucuronate interconversions
Fructose and mannose metabolism
Galactose metabolism
Ascorbate and aldarate metabolism
Starch and sucrose metabalism
Amino sugar and nucleotide sugar metabolism
Pyruvate metabolism
Glyoxylate and dicarboxylate metabolism
Propanoate metabolism
Butanoate metabolism
C5-Branched dibasic acid metabolism
Inositol phosphate metabolism
.2 Energy metabolism
Oxidative phosphorylation
Photosynthesis
Photosynthesis - antenna proteins
Carbon fixation in photosynthetic organisms
Carbon fixation pathways in prokaryotes
Methane metabolism
Nitrogen metabolism
Sulfur metabolism
1.3 Lipid metabolism
Fatty acid biosynthesis
Fatty acid elongation
Fatty acid degradation
Synthesis and degradation of ketone bodies
Cutin, suberine and wax biosynthesis
Steroid biosynthesis

-

List of pathways (KEGG database)
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Background:
Pathway analysis

* Pathway analysis identifies dysregulated (perturbed) biological
pathways by stimuli or disease conditions

Gene expression data Pathway information Pathway analysis result

* Genelist * Pathway score
* Gene-gene relationship * Pathway-level statistics
* Rankings




Background:
Timeline of Pathway analysis

Gene-based Graph(Interaction)-based
Approach Approach

DEGraph (2011)
Clipper (2013)
DEAP (2013)
TEAK (2013)
PATHIWAYs (2013)

ORA (2002) Pathway-Express (2007)
SPIA (2009)
GSEA (2005) NetGSA (2009)
GSEA-SNP (2008)
GSA-SNP (2010)

No pathway tool for
>  time-series

* Proportion of DEGs in a pathway * Graph-based (node: gene / edge: interaction)
* Gene-level statistics (e.g. P-value) * Gene-gene relationship

for individual genes * Pathway to sub-pathway
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Motivation

* Q1. Sub-pathways from time-series transcriptome data ?

Transcriptome data
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* Mapping DEGs in the pathway

Time-series
Transcriptome data

?

DEGs from each time point or
whole time points?
 How to detect expression
propagation along time?



Motivation (cont.)

e Q2. Regulators of the sub-pathways from time-series
transcriptome data ?

Transcriptome data Time-series
Transcriptome data

?

 What if there is a delay between TF-

* Finding relationship between TF gene expression patterns?
and target gene by their * What if the number of pathway genes &

expression pattern candidate TFs are too large?



Two Main ldeas

* Q1. Sub-pathways from time-series transcriptome data ?

e Al. Cross-correlation calculation between two
differential expression vectors

* Q2. Regulators of the sub-pathways from time-series
transcriptome data ?

e A2. Influence maximization in the time bounded
network



TimeTP (Time-series TF-Pathway map)

* Overview
Cross-correlation Influence maximization
(Signal processing) (Social network)
Al GRN Step 4
Pathway L
Step 1 1 : Eg: : : !:lndmg .the most
. influential TFs targeting
Locating perturbed Pathway the subpathways
subpathways 2
with time-series Step 3
expression propagation Perturbed subpathway Mapping the genes starting
found by delay analysis sub-pathways into time
i bounded network
A2
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Two Main Ideas

* Q1. Sub-pathways from time-series transcriptome data ?

e Al. Cross-correlation calculation between two
differential expression vectors

* Q2. Regulators of the sub-pathways from time-series
transcriptome data ?

 A2. Influence maximization in the time bounded
network



Differential Expression Vectors

Step 1 pathway @—0<=0—>0>0>0 Genes
ep 1 .
Genes in the
: > —@—>
Locating perturbed 09 perturbed subpathway

sub-pathways Pathway o—0 TFs

with time-series expression <
propagation %.%‘ TFs targeting the

perturbed subpathway

Perturbed subpathway
found by delay analysis

* KEGG pathway database
* Pathway network is represented as a directed graph G=(N, E)

« TimeTP assigns a vector v for each node, representing the differential expression as 1
(overexpressed), -1 (underexpressed), or 0.

Gene Condition 1
expression

value Condition 2 128 20 40 32 38
Differential expression vector 1 0 0 -1 -1

e Determined by Limma (microarray) or DEseg2 (RNA-seq) software



Locating perturbed sub-pathways

* For each pathway graph, TimeTP filters out invalid edges
* Validity of edges

* Cross-correlation = (1) direction of propagation
(2) the number of delayed time points for a gene pair

* Direction of propagation should be same as the original graph

 The number of delayed time points should be below the threshold

. O Delay : 2 TP 0

o (0,1,1,0,0,0) (0,0,0,1,1,0)
(01 % B)(n) = > wi(t)va(t+n)
t=—oe Valid edge (0 < delay < threshold)
Cross-correlation between two genes
d(vi,v2) = argmax(vi * v2)(n) (b) Q O
Delay : -2 TP ’

Delay between two genes
(0,0,0,1,1,0) (0,1,1,0,0,0)

Invalid edge (Delay < 0)



Two Main Ideas

* Q1. Sub-pathways from time-series transcriptome data ?

e Al. Cross-correlation calculation between two
differential expression vectors

* Q2. Regulators of the sub-pathways from time-series
transcriptome data ?

 A2. Influence maximization in the time bounded
network



Time-bounded network construction

GRN
. Genes
Step 2 . Genes in the
Construction of perturbed subpathway
time bounded network . TFs
from GRN and PIN e tarmeting th
. . s targeting the
by time delay analysis . ertortod sebpthway
PIN

* Integration of GRN and PIN

* To search for upstream regulators of perturbed sub-pathways, gene regulatory
network (GRN) and protein-protein interaction network (PIN) are integrated.

* HTRIdb (6 public databases and literature) and STRING database

* Invalid edges are filtered by the cross-correlation



Labeled influence maximization
for transcription factor detection

Step 4 GRN

Finding the most influential ‘ Genes

regulators targeting the Genes in the

subpathways . perturbed subpathway
O =

Step 3 ®

Mapping the genes starting TFs targeting the
sub-pathways into time perturbed subpathway

bounded network PIN \

* Mapping sub-pathway genes into the network
* Labeling the starting point of the perturbation in the integrated network

* To find the regulators that have the overall effect on multiple sub-pathways



Labeled influence maximization
for transcription factor detection (cont.)

Step 4 GRN
Finding the most ‘ Genes

influential regulators

Genes in the
targeting the subpathways . perturbed subpathway
o -
Step 3
Mapping the genes starting . TFs targeting the
sub-pathways into time perturbed subpathway
bounded network PIN
T NPAI T I LT
* Influence maximization YY'Y &\*//;*\;,M ;\a\j
. : : : /
» Used for social network to find a viral marketing targets *//k */ *\\*//
that have the biggest influence to other customers \\*7

Labeled influence maximization (2011)

* Finding the most influential node for specific (labeled) nodes

Given the starting points of the perturbed sub-pathways as labeled,
TimeTP finds the most influential TFs on sub-pathway genes

Scoring and ranking TFs by the amount of influence



Visualization: TF-Pathway Map in Time Clock
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Test with Experimental Data

* MCF10A dataset
* RNA-seq dataset of non-transformed human breast epithelial cells MCF10A (Kselev et al., 2015)

* Stimulated with 10 ng/ml EGF(Epidermal growth factor)
for 15, 40, 90, 180 and 300 min (6 time points including 0 min)

* WT and PIK3CA knock-in samples to compare

* Designed to trigger the long term activation of PIP3 signaling by the modification of PIK3CA and
track its downstream effect

 EWS/FLI1 Knock-down dataset

* Microarray dataset of a shRNA-induced EWS/FLI1 knockdown in the A673 Ewing's Sarcoma cell line
(Bilke et al., 2013)

* 6 time points including O min
* Single time-series samples
* EWS/FLI1: Ewing sarcoma oncoprotein

* Designed to show a co-regulation of EWS/FLI1 and E2F3



TF-Pathway Map in Time Clock

MCF10A dataset
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TF-Pathway Map in Time Clock

* Findings

Perturbation in PI3K-Akt signaling, the main objective of the (Foxoa I TsResFT

biological experiment O

Consequent changes in the downstream pathways of PI3K-Akt 031 %ﬁ

Major findings supported by the previous studies: ;z fa%B 'g‘ET
FOXO04 (Known targets of Akt) cond N N
FoxO and Wnt signaling pathway ae 6 !5 ©

Wnt signaling

(known to be affected by FoxOs)

The late activation of ErbB pathway indicates a positive
feedback loop of the Akt signaling (Reproduction of the
same result)
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P @ @

SHC4 %
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signaling




Regulator Analysis Result

TimeTP MRA DREM
Rank TF Rank TF TF

1 NKX3-1 I SREBFI | FOXF2, NF1, SRF
2 LMO2
3 ATEF3
4 FOXAI
5 CEBPA
6
7
8

FOX04

FOXL1

RFX1
9
10 SREBFI
11 FOXO3
12 USF2
1
14 GTEF2Al
15 RORA
16 I RREBII

* TFs predicted and ranked by TimeTP include three important TFs from
the original paper of the dataset (Reproduction of the same result).
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TF-Pathway Map in Time Clock

* Findings

1.

Perturbation in cancer-related pathways
* Signaling pathways

* Adhesion-related pathways
(known target of EWS/FLI1)

Major findings supported by the previous studies:

FLI1 (EWS/FLI1)
(Reproduction of the same result)

GLI1 (a central mediator of EWS/FLI1 signaling in Ewing
tumors)

FOXO1 (Known target of EWS/FLI1) and downstream
pathways

POSTN GATA8 TNFRSF25 ETS2 WT1 FOXM1 MYC GLI3

FoxO signaling

‘NBZW 5A MP4
FZl



TF-Pathway Map in Time Clock

* Findings
4. When E2F3 is added in a network, E2F3 is predicted to target SGK1 and GLI1 (same
as FLI1 or ETS2)

- Indicating E2F3 co-regulation with EWS/FLI1
(Reproduction of the same result)

E2F3

POSTN GATA6 TNFRSF25
B B




Summary

Estimates expression delay

CfOSS-Correlation between two genes to find sub-
pathways

e« e . Finding and ranking TFs regulating
Influence maximization sub-pathway genes

Visualization of pathway

TF-Pathway map in time CIOCk perturbation dynamics

http://biohealth.snu.ac.kr/software/TimeTP



http://biohealth.snu.ac.kr/software/TimeTP
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Time-Series clustering

* |dentifying a set of genes with a similar expression pattern
can reveal co-regulated genes under a condition of interest
(e.g., stress, developmental phase, phenotype difference)
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Goal of this study

Compare multiple time series data with each data

Why? being sampled at different conditions (i.e.,
experimental conditions, phenotypes) to identify
similar and different biological mechanisms

How? |dentify biologically meaningful gene clusters

(triclusters) that have significantly similar or
different expression patterns from 3 dimensional
time series data (Gene-Time-Condition)



Backgrounds:
Methods for time series gene clustering

Clustering methods can be classified by the dimension of
the time series data

1 Dimensional — Single time point (static) gene expression data

2 Dimensional — Multiple time points gene expression data

3 Dimensional — Multiple time points and conditions gene
expression data



Backgrounds:
One Dimensional (time series) clustering analysis

 Differentially expressed analysis is done for 1D data

» Differential expressed genes are required to have a gene expression fold change
above a threshold in at least to consecutive time points (Nau G. et al. PNAS
2002, Shapira S. et al. Cell 2009)

* Time series DEG tools
* Significance Analysis of Microarrays (SAM), Tusher et al. PNAS (2001)

* Bayesian Estimation of Temporal Regulation (BETR), Aryee et al. BMC
Bioinformatics (2009)

* Drawbacks
* Heuristic approach

e Does not take into account the continuous nature of time series data
(independent statistical test on each time point)



Backgrounds:
Two Dimensional (time series) clustering analysis

* A number of methods were proposed for clustering 2D time series data
among which biclustering approaches were most successful

» Biclustering is able to identify genes with similar expression patterns
across the time dimension. Since it performs sub-space clustering, it is
able to detect similar expression with time lag.

* Cheng and Church, ISMB (2000)

* BiGGESTS (Biclustering Gene Expression Time Series), Joana P. BMC Research Notes
(2009)

 Drawbacks

* Biclustering is NP hard, hence relies on
heuristic methods or probabilistic approximation

e Cannot detect clusters with different expression patterns
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Backgrounds:
Three Dimensional time series analysis

Three dimensional data constitutes Genes, Time points and Conditions
* Conditions refers to the different condition of each time series data (i.e., phenotype,

environment stress, experimental design)

Clustering such 3D data is known as triclustering

Only a few triclustering algorithms are present
e TriCluster (Zhao and Zaki, 2005)
* OPTricluster (Tchagang 2012)

Drawbacks

e TriCluster performs biclustering on each time slice
(not free from NP hard problem)

* OPTricluster cannot detect clusters with different expression patterns

across all conditions

GxCxT matrix

Genes (1)

<
«

g

15

g

39

g3

g

25

23

Time (j)



STEP 1. Spherical K-means clustering Data

Ti m e Sve cto r Cluster genes with homogenous expression patterns GxCT

along the concatenated condition and time dimension matrix

!

* A triclustering algorithm that is able
to cluster genes with similar or
different expression patterns among

. .. . Cluster 1
multiple conditions from 3D time |
series data
Cluster 2 !
Cluster K
STEP 2. Cluster post-processing
Are expression patterns in cluster significantly meaningful?
Yes No
Classified clusters Unclassified clusters
Cluster 1 Cluster 2 Cluster i Cluster j, ..., Cluster K
{21 82 83} | {84 85 &) . RSTEP3' {1
escue genes
/\ 5, < uee Unclassified clusters
—_ 5 N 1818283 with no meaningful
- s; expression patterns

DEP SEP



Motivation

Tow major challenges in Triclustering

1. Clustering high dimensional data is difficult
(2D biclustering is already NP-hard)

2. Detecting triclusters where the expression patterns
among conditions differ is a non-trivial problem



Solving 1%t challenge — Curse of dimensionality

* Dimension reduction by stripping away the sample dimension and
concatenating it to the time dimension

* Takes burden off of for clustering and post-processing procedures

3D matrix

GxCxT matrix t
1
t1 t2
o 15 20
Sl 1o, | 39| 52
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3 O3 8 16
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Time (j)
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g, 39 52 31 35 22 12 55 52 48
O3 8 16 6 7 3 1 20 18 17
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Clustering genes

Perform Spherical K-means clustering on the GxCT data matrix

* Objective function is to minimize the cosine distance between the genes
and the centroid of the cluster

n k
o ] ] n=genes, k=clusters, p=membership of gene to cluster,
Z Z Hij (1 o COS(gZ, CJ)) g=gene, c=centroid
(N
. . . . STEP 1. Spherical K-means clustering Data
Genes with similar expression patterns song o coneateg oo s o o |
across the CT dimension will be clustered I
together g z
| | | | | |

Cluster 1 :

Cluster 2 :

Cluster K




Solving 2" challenge — Detecting cluster patterns

e Re-introduce Sample dimension by splitting vector in sample domain
* Each gene vector is dissected according to the number of conditions

v(g)=<1,1,1,4,1,2,25, 3, 3>

A B C
(0h, 1h 6h) (Oh, 1h 6h) (Oh, 1h 6h)

Condition vectors
O v(g_A)

3 — —

O eh O Ti(g_B)

O v(g_C)

2 —
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Solving 2" challenge — Detecting cluster patterns

DEP (Differentially Expressed Pattern)

e All samples in a cluster have different
expression patterns

ODEP (One Differentially Expressed Pattern)

* One sample in a cluster have different
expression from the others

SEP (Similarly Expressed Pattern)

* All samples have similar expression pattern
in a cluster

1.0

Expression value

Expression value

Expression value
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® RootABA
A RootBL
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RootIAA
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Time points

Cluster 20 (ODEP, 32)

A
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Time points

Cluster 357 (SEP, 135)

A
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> ¥

£
]
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]
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day3 day7
Time points

Compute mutual
information to see if the
pattern of each condition
correlates well with the
condition label

Perform ANOVA on the
condition vector’s cosine
distance to see if one
pattern is significantly
different

Statistically test if within
cluster cosine distance is
significantly tight (i.e.,
pattern is similar)



Rescuing genes

K-means suffers from the problem of pre-defined K clustering

Hence, some genes may be wrongly clustered, which cluster is rejected
due to insignificance

Each gene in rejected clusters are reassigned to accepted clusters and
rescued if the fitness of the cluster improves

e Approximately 2.5% of rejected genes were rescued in average



Experiments

TimesVector was performed on 4 time series data sets, each
with a different number of genes, time points and conditions

Malaria infected Two male and female
mice, where one of each sex is
gonadectomized

[
Rice plants treated with six
different phytohormones

Data ID Organism Genes Conditions Time points Data type
—GSE4324 Mouse 18116 4 4 microarray
—GSE39429 Rice 29696 4 6 microarray

Proprietary data Rice 25272 2 3 RNA-seq
—GSEI11651 Yeast 10639 5 3 microarray

Two Rice variants treated
with dehydration

Five different yeast strains
fermented




DEP

ODEP

SEP

Clustering Results — Mouse Data (GSE4324)

Centroids
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Goal of study: Identify genes that are caused by
sex difference and respond to gonadectomized

conditions

Pathways Genes p-value
Alzheimer disease-presenilin 24 6.19 x 1074
Cadherin signaling 24 5.63 x 107
Axon guidance mediated by Slit/Robo 9 6.95 x 10723
Whnt signaling 37 1.00 x 10792
Gonadotropin releasing hormone receptor 32 1.51 x 10792
TGF-beta signaling 17 3.83 x 1072
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clusters (GSE4324)

The significant pathways detected in genes of

DEP and ODEP clusters are previously

reported to be related to malaria infection.

The significant pathways detected in genes of
SEP clusters were related to responsive
signals to infection, such as “T cell activation”

and “B cell activation”.



Clustering Results — RiceData (GSE39429)

Genes

Cluster 302 { ODEP , 175)

Cluster 302
(175 genes)

Cluster 350
(287 genes)

Cluster 383
(98 genes)

Cluster 482
(144 genes)

Cluster 437
(187 genes)
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Goal of study: Identify genes that respond to
specific phytohormones

(Abscisic acid, Gibberellin, Auxin, Brassinosteroid,
Cytokinin and Jasmonic acid)

Among the phytohormones, we found 5
clusters that strongly respond to Abscisic acid
(ABA). The clusters also show gradual up-
regulation of genes at different time points.

These up-regulated genes are significanlty
related to “aging” , “organ senscence” and
“response to hydrogen peroxide” GO terms,
which are known responses to ABA.
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Clustering Results — Rice Data (Proprietary data)
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Custer 25 (SEP, 553)
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Exgrasaon wine

Rice clusters

Goal of study: Identify genes that are differentially
expressed in drought susceptible and drought
tolerance rice plants

The significant GO terms detected in DEP/ODEP
clusters were “Photosynthesis” and “Light
harvesting”. Photosynthesis related genes were

mainly found in cluster 33 (red: WT, blue: AP2
M

Photosynthesis related genes were down-
regulated in both plants but greater in AP2.

Experimental validation of net photosynthesis

Pnet (umol CO, m? s*') difference
(i.e. stress_treated — control)
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Clustering Results — Yeast Data (GSE11651)
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Yeast clusters (GSE11651)

\

Goal of study: Identify genes that are differentially
expressed to specific yeast strains during
fermentation to find target genes for metabolic
engineering of aromatic compounds

Aromatic compound GO terms were
significantly enriched in DEP/ODEP clusters.
This was reported in the study that generated
this data.

The related study reported that the
fermentation kinetics were all similar in five
strains, which is well reflected in SEP clusters



Silhouette score

Selecting optimal K

Run TimesVector over a range of K and select K with maximum silhouette
score (geometric mean of DEP and SEP silhouette score)

DEP
—e— SEP

® - geometric mean

0 100 200 300 400 500 600 700 800

Testing with several data sets
we found that K may be set as

K = —85.71 + 28.57(C X T)

E.g.) A time series data with 3
time points and 5 conditions,
«—— K=200 (rounded)



Comparing clustering performance

Compare the clustering results of TimesVector with TriCluster and
OPTricluster in terms of weighted silhouette score and within cluster
cosine distance

Testing how well clusters are separated Testing tightness of cluster

14 ® TimesVector 0.3
M Optricluster

12 M Tricluster 0.25
10
0.2
3 .
0.15
6
4 0.1
2 £ 0.05
0 0
DEP SEP DEP SEP

X
DEP SEP DEP SEP

B TimesVector
B Optricluster
M Tricluster

Weighted silhouette score
Within cluster cosine distance

DEP SEP

Rice

Mouse Rice_hormone Yeast Mouse Rice hormone
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