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Why Do We Focus on DNA Methylation?
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B Aberrant methylation could be used as biomarker for clinical decisions, such as cancer
diagnosis and prognosis.

B DNA methylation markers can also be used to predict the origin of tumors with
metastases.

B The Cancer Genome Atlas Project (TCGA) now provides unprecedented cancer genomic
and methylation data resources for various cancer researches.




Progressive Change in DNA Methylation from
Normal Tissue to Breast Cancer Tissue

DNA methylation field defects in cancer
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Progression of field defects in breast cancer. (c) Example of a DNAm profile of a hypervariable and

hypermethylated DVMC, showing the progressive change in DNA methylation. N represents normal tissue
from cancer-free women, NADJ for age-matched normal samples adjacent to breast cancers.



DNA Methylation Markers Distinguish Prostate
Cancers from Benign Adjacent Tissue
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Fig. 4 ROC curve and waterfall plots for performance of the top 3 CpG diagnostic model in a training and b validation datasets. The value of the
classifier is given by 6.52-17.04*cg00054525 + 24.18%cg16794576-13.82*cg24581650, where the intercept and coefficients have been regressed by
a binomial generalized linear model. A threshold value of this classifier was chosen to yield maximal non-unity specificity in the training set. The
red dot on the ROC curve corresponds to the sensitivity and specificity of the classifier at the chosen threshold. The dashed line on the waterfall
plots is drawn at the chosen threshold value of the classifier

\ BMC Cancer, 17(1): 273, 2017




Methylation Markers can be Used for Diagnosis and
Prognosis of Common Cancers
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Fig. Methylation signatures can differentiate different cancer types from corresponding normal tissues.

(A) Unsupervised hierarchical clustering and heat map presentation associated with the methylation profile (according to
the color scale shown) in different cancer types. (B) ROC curve showing the high sensitivity and specificity in predicting
different cancer types. (C) Zoom-in view of the block diagram in B. PNAS. 114:7414-7419, 2017



ctDNA Methylation Markers for Diagnosis and Prognosis
of Hepatocellular Carcinoma
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Nature materials, 16:1155, 2017

All of the studies confirmed that there are distinguished DNA methylation
patterns between cancer tissues and their related normal tissues.



Data Resources and Methods

B Datasets (TCGA)

« Gene expression data:
Level 3 expression data from TCGA, log2(x+1) transformed.

 DNA methylation data:
(I) The probes mapped to sex chromosomes were removed;
(i) The samples with missing data (i.e. NAs) in more than 30% of the probes were

excluded;
(il1) The probes with missing data in more than 30% of the samples were discarded;

(iv) The rest of the probes with NAs were imputed using the EMimpute algorithm;
(v) BMIQ was employed to correct for the type Il probe bias.

B Validation dataset

* GEO: GSE69914, GSE76938, GSE48684, GSE 73549, GSE65820,
GSE66836, GSE89852, GSE58999 and GSE38240



Feature Selection & Function Analysis

Definition of differentially methylated probes between tumor and normal
samples

* |B-difference| > 0.2 and a false discovery rate (FDR) corrected P-value
(Benjamini/Hochberg) < 0.05

Definition of differentially methylated probes between different cancer types
* |B-difference| > 0.3 and FDR < 0.01

Feature selection & Tumor specific multiclass classifier
 Recursive feature elimination & logistic regression, OneVsRest Classifier

Statistical analysis
« All statistical analyses and visualization were performed with Python3.5.2 on

anaconda3-4.0.0.

Gene ontology enrichment analysis and pathway enrichment analysis
- DAVID



Data Resources and Methods for
Survival Analysis

Cox regression analysis
* (1) Standard deviation (SD) across all tumor samples of 26 cancers should be > 0.2.

* (2) FDR (Benjamini/Hochberg method) for every probe was calculated via univariate
COX regression in each cancer, the probes with FDR < 0.05 were retained for further
filtration.

* (3) Log-rank test P-value for survival time among tumor samples should be < 0.05.
* (4) Multivariate cox regression was performed for the left probes, and stepwise

regression was conducted, the probes of multivariate cox regression p-value < 0.05
were removed from the feature set in each iteration.

* (5) The remaining probes were used to fit the prognostic classifier. Python package
lifelines and cox’s proportional hazard model was implemented 1n cox regression
analysis.



Methylation Profiles of Different Cancers Vary
Tremendously
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Countplot or differential methylated probes in different cancer types.

The number of hypermethylated and
hypomethylated CpG sites vary greatly
In 18 different cancer types.

1. Esophageal carcinoma (ESCA) has
the largest count of hypermethylated
CpG sites, whereas
pheochromocytoma and
paraganglioma (PCPG) has the least.

2. Cervical squamous cell carcinoma
and endocervical adenocarcinoma
(CESC) has the least count of
hypomethylated CpG sites, while
liver hepatocellular carcinoma
(LIHC) shows the highest number of
hypomethylated CpG sites



Methylation Profiles of Different Cancers Vary

Tremendously
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The distribution of differential methylated probes
based on Relation to Island vary significantly in
different groups.

1. Differential methylated CpG sites (DMCs) located at
gene body are far more than that of other regions, and
OpenSea holds a large proportion DMCs among all
different Relation To Island (OpenSea, S_Shelf,

S Shore, Island, N_Shore and N_Shelf).

2. The number of differential methylated CpG sites
located in the gene body regions is the highest among
different genomic regions (TSS1500, TSS200, 5'UTR,
1stExon, Body and 3'UTR).



Methylation Profiles of Different Cancers Vary

Tremendously
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Boxplot of Spearman’s correlation among different cancer types.

Spearman’s correlation analysis
between the methylation level
of CpG sites and the expression
of their corresponding genes for
each cancer.

Indicating that aberrant DNAmMSs
In different tumors may have
different functions.

The hypermethylated CpG sites tends to negatively correlate with the expression of their corresponding genes in almost
all different tumor types. The methylation level of most hypomethylated CpG sites are positively correlated with the
expression of their corresponding genes in cancers, but some of them are negatively correlated with the expression of
their relevant genes in other cancers



Seven Probes Classifier has Good Performance
In Distinguishing Tumor and Normal

Tram Learning curve
> 1.10
J —®— Training score
105 — —8— Cross-validation score
2 . 0 e—
S - L — = = '
3 085
-
= "
- = =
7r 080
- 2
-_ 5
f_j-i 0.85 -
: -
- ’ 080
-
— ROC curve(area=0.9862) 0757

| | | | | —
02 0.4 o 0.8 1.0 0.0
100 125 150 175 200

4 .6
False Positive Rate L L
Training sizes

a, ROC curve of training (12 cancer types and 1216 samples) showing the high
sensitivity and specificity in predicting different cancer types from corresponding normal
tissues. b Learning curve of 5-fold cross validation in training (ROC = 0.979).



Seven Probes Classifier has Good Performance
In Distinguishing Tumor and Normal
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c, d, e ROC curve for the
validation data set of
GSE69914(Breast Cancer),
GSE48684(Colorectal Cancer) and
GSE76938 (Prostate Cancer).

f ROC curve for the independent
validation data set of the remaining
9 TCGA cancers not included in
the training set.

T and N indicate numbers of tumor
and normal samples



Seven Probes Classify Those Samples of 12 Cancer

Types into Two Distinguished Groups

Unsupervised hierarchical clustering
and heatmap associated with the
methylation profile of the seven probes
across all 1216 samples of 12 cancers.
Those samples were classified into two
distinct classes by the 7 CpG sites
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GO Biological Process and KEGG Pathway
Enrichment Analysis Results
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Enrichment analyses for those genes that their expression levels were significantly
correlated with 4 probes, highly associated with tumor biogenesis.



Tumor-Specific Classifier with 12 Probes Effectively
Distinauishes Different Cancers
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Tumor-Specific Classifier Effectively Distinguishes
Different Cancers

ROC curve in training set of TCGA 26 cancers

The micro-average AUC of
OneVsRestClassifier based on those 12
selected CpG sites reaches to 0.98 for
w4 those 26 different cancers.
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The results indicate the high sensitivity
and specificity of our multiclass tumor
specific classifier in predicting different
cancers.



Tumor-Specific Classifier Effectively Distinguishes
Different Cancers
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ROC curve in validation set
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Validation based on GEO datasets of
breast cancer (BRCA), colorectal cancer
(COAD), prostate cancer (PRAD),
ovarian cancer (OV), lung
adenocarcinoma (LUAD) and
hepatocellular carcinomas (LIHC).
micro-average AUC > 0.89

ROC curve In six independent validation
dataset of different cancers. T indicates
the numbers of tumor samples used in
each dataset.



Tumor-Specific Classifier Effectively Predict the
Origin of Tumors with Metastases

ROC curve in validation set of tumor with metastases
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GSE58999: Breast cancer with metastases to
lymph node.

GSE73549 and GSE38240: Prostate cancer with
metastases to bone or lymph node (26
metastatic samples in total).

ROC curve of multiclass tumor specific
classifier in metastatic breast cancer and
metastatic prostate cancer.

T indicates the numbers of tumor samples with
metastasis used In each dataset.



These 12 Probes can Effectively Distinguish
Metastatic Tumors From Normal Tissues
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Unsupervised clustering of the DNA methylation levels of the 12 CpGs between normal prostate samples, prostate
tumor and prostate tumor with metastases from GSE73549 and GSE38240.
Annotations of the column of the heatmap indicate disease states of patients.



Construction of the Probe-based Prognostic Classifier
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The Performance of Probe-based Prognostic Classifier
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Construction of the probe-based prognostic classifier.

a The pipeline of feature selection for prognostic classifier. b-h The result of Prognostic classifier for 7 cancer types
Upper panel: Kaplan-Meier survival analysis for the patients in each of the 7 cancers
Middle panel: heatmap showing methylation of the CpGs used by the prognostic classifier in patients.
. Lower panel: Z-score distribution of the prognostic classifier and patient survival status.
The patients were divided into low-risk and high-risk groups using the median value of the partial hazard as cutoff. p-value were calculated by the log-rank test.



Conclusions

. Methylation profiles of different cancers vary tremendously, which can be used
to distinguish the cancer from normal as well as different cancer types.

. Results with independent validation datasets of various cancers demonstrate the
performance and robustness of our DNAm site-based tumor-normal classifier.

. Tumor-specific classifier can effectively distinguish different cancers. The
DNAmM markers for tumor-specific classifier can also be used to predict the
origin of tumor with metastases or with unknown primary origin.

. Prognostic classifier with DNAm pattern successfully divides patients into
high-risk or low-risk group in different cancer types.

. We identified potential diagnostic and prognostic biomarkers based on the
methylation changes of DNAm patterns in diverse TCGA cancers, which have
the potential application in clinical practices.
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