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Why Do We Focus on DNA Methylation? 

 DNAm changes in the non-islands regions, 
such as shores and gene bodies also play 
important roles in gene expression 
regulation.

 Aberrant methylation could be used as biomarker for clinical decisions, such as cancer 
diagnosis and prognosis.

 DNA methylation markers can also be used to predict the origin of tumors with 
metastases.

 The Cancer Genome Atlas Project (TCGA) now provides unprecedented cancer genomic 
and methylation data resources for various cancer researches.



Progressive Change in DNA Methylation from 
Normal Tissue to Breast Cancer Tissue

Progression of field defects in breast cancer. (c) Example of a DNAm profile of a hypervariable and 

hypermethylated DVMC, showing the progressive change in DNA methylation. N represents normal tissue 

from cancer-free women, NADJ for age-matched normal samples adjacent to breast cancers.

DNA methylation field defects in cancer 

tissue



DNA Methylation Markers Distinguish Prostate 
Cancers from Benign Adjacent Tissue

BMC Cancer, 17(1): 273, 2017



Methylation Markers can be Used for Diagnosis and 
Prognosis of Common Cancers

Fig. Methylation signatures can differentiate different cancer types from corresponding normal tissues. 

(A) Unsupervised hierarchical clustering and heat map presentation associated with the methylation profile (according to 

the color scale shown) in different cancer types. (B) ROC curve showing the high sensitivity and specificity in predicting 

different cancer types. (C) Zoom-in view of the block diagram in B.
PNAS, 114:7414-7419, 2017



ctDNA Methylation Markers for Diagnosis and Prognosis 
of Hepatocellular Carcinoma

ROC of the diagnostic prediction 

model with methylation markers in 

the training (c) and validation data 

sets (d).

Nature materials, 16:1155, 2017

All of the studies confirmed that there are distinguished DNA methylation 

patterns between cancer tissues and their related normal tissues.



Data Resources and Methods

 Datasets (TCGA)
• Gene expression data: 

Level 3 expression data from TCGA, log2(x+1) transformed.

• DNA methylation data: 

(i) The probes mapped to sex chromosomes were removed; 

(ii) The samples with missing data (i.e. NAs) in more than 30% of the probes were 
excluded; 

(iii)  The probes with missing data in more than 30% of the samples were discarded; 

(iv)  The rest of the probes with NAs were imputed using the EMimpute algorithm;

(v) BMIQ was employed to correct for the type II probe bias.

 Validation dataset
• GEO: GSE69914, GSE76938, GSE48684, GSE73549, GSE65820, 

GSE66836, GSE89852, GSE58999 and GSE38240



Feature Selection & Function  Analysis

 Definition of differentially methylated probes between tumor and normal 
samples
• |β-difference| > 0.2 and a false discovery rate (FDR) corrected P-value 

(Benjamini/Hochberg) < 0.05

 Definition of differentially methylated probes between different cancer types
• |β-difference| > 0.3 and FDR < 0.01

 Feature selection & Tumor specific multiclass classifier
• Recursive feature elimination & logistic regression, OneVsRest Classifier

 Statistical analysis
• All statistical analyses and visualization were performed with Python3.5.2 on 

anaconda3-4.0.0. 

 Gene ontology enrichment analysis and pathway enrichment analysis
• DAVID



 Cox regression analysis

• (1) Standard deviation (SD) across all tumor samples of 26 cancers should be > 0.2. 

• (2) FDR (Benjamini/Hochberg method) for every probe was calculated via univariate 

cox regression in each cancer, the probes with FDR < 0.05 were retained for further 

filtration. 

• (3) Log-rank test P-value for survival time among tumor samples should be < 0.05.

• (4) Multivariate cox regression was performed for the left probes, and stepwise 

regression was conducted, the probes of multivariate cox regression p-value < 0.05 

were removed from the feature set in each iteration.

• (5) The remaining probes were used to fit the prognostic classifier. Python package 

lifelines and cox’s proportional hazard model was implemented in cox regression 

analysis.

Data Resources and Methods for 
Survival Analysis



Methylation Profiles of Different Cancers Vary 
Tremendously

The number of hypermethylated and 

hypomethylated CpG sites vary greatly 

in 18 different cancer types. 

1. Esophageal carcinoma (ESCA) has 

the largest count of hypermethylated

CpG sites, whereas 

pheochromocytoma and 

paraganglioma (PCPG) has the least. 

2. Cervical squamous cell carcinoma 

and endocervical adenocarcinoma 

(CESC) has the least count of 

hypomethylated CpG sites, while 

liver hepatocellular carcinoma 

(LIHC) shows the highest number of 

hypomethylated CpG sites
Countplot or differential methylated probes in different cancer types. 



The distribution of differential methylated probes 

based on Relation to Island vary significantly in 

different groups. 

1. Differential methylated CpG sites (DMCs) located at 

gene body are far more than that of other regions, and 

OpenSea holds a large proportion DMCs among all 

different Relation To Island (OpenSea, S_Shelf, 

S_Shore, Island, N_Shore and N_Shelf). 

2. The number of differential methylated CpG sites 

located in the gene body regions is the highest among 

different genomic regions (TSS1500, TSS200, 5'UTR, 

1stExon, Body and 3'UTR).

Methylation Profiles of Different Cancers Vary 
Tremendously



Spearman’s correlation analysis 

between the methylation level

of CpG sites and the expression 

of their corresponding genes for 

each cancer. 

Indicating that aberrant DNAms

in different tumors may have 

different functions.

Boxplot of Spearman’s correlation among different cancer types.

The hypermethylated CpG sites tends to negatively correlate with the expression of their corresponding genes in almost 

all different tumor types.  The methylation level of most hypomethylated CpG sites are positively correlated with the 

expression of their corresponding genes in cancers, but some of them are negatively correlated with the expression of 

their relevant genes in other cancers

Methylation Profiles of Different Cancers Vary 
Tremendously



Seven Probes Classifier has Good Performance 
in Distinguishing Tumor and Normal 

a, ROC curve of training (12 cancer types and 1216 samples) showing the high 

sensitivity and specificity in predicting different cancer types from corresponding normal 

tissues. b Learning curve of 5-fold cross validation in training (ROC = 0.979). 



c, d, e ROC curve for the 

validation data set of 

GSE69914(Breast Cancer), 

GSE48684(Colorectal Cancer) and 

GSE76938 (Prostate Cancer). 

f ROC curve for the independent 

validation data set of the remaining 

9 TCGA cancers not included in 

the training set. 

T and N indicate numbers of tumor 

and normal samples

BRCA COAD

PRAD

Seven Probes Classifier has Good Performance  
in Distinguishing Tumor and Normal 



Unsupervised hierarchical clustering 

and heatmap associated with the 

methylation profile of the seven probes 

across all 1216 samples of 12 cancers. 

Those samples were classified into two 

distinct classes by the 7 CpG sites

Right color bars mark the tissue type and 

cancer type. 

Seven Probes Classify Those Samples of 12 Cancer
Types into Two Distinguished Groups



Enrichment analyses for those genes that their expression levels were significantly 

correlated with 4 probes, highly associated with tumor biogenesis.

GO Biological Process and KEGG Pathway 
Enrichment Analysis Results



Tumor-Specific Classifier with 12 Probes Effectively 
Distinguishes Different Cancers

Unsupervised hierarchical clustering and 

heatmap showing the methylation profile 

of the selected 12 probes across 7605 

tumor samples of 26 cancer types reals 

that those 12 probes complement with 

each other to distinguish different cancer 

types. 



The micro-average AUC of 

OneVsRestClassifier based on those 12 

selected CpG sites reaches to 0.98 for 

those 26 different cancers. 

The results indicate the high sensitivity 

and specificity of our multiclass tumor 

specific classifier in predicting different 

cancers. 

Tumor-Specific Classifier Effectively Distinguishes 
Different Cancers



Validation based on GEO datasets of 

breast cancer (BRCA), colorectal cancer 

(COAD), prostate cancer (PRAD), 

ovarian cancer (OV), lung 

adenocarcinoma (LUAD) and 

hepatocellular carcinomas (LIHC).

micro-average AUC > 0.89

ROC curve in six independent validation 

dataset of different cancers. T indicates 

the numbers of tumor samples used in 

each dataset.

Tumor-Specific Classifier Effectively Distinguishes 
Different Cancers



a

ROC curve of multiclass tumor specific 

classifier in metastatic breast cancer and 

metastatic prostate cancer. 

T indicates the numbers of tumor samples with 

metastasis used in each dataset.

Tumor-Specific Classifier Effectively Predict the 
Origin of Tumors with Metastases

GSE58999: Breast cancer with metastases to 

lymph node. 

GSE73549 and GSE38240: Prostate cancer with 

metastases to bone or lymph node (26 

metastatic samples in total). 



Unsupervised clustering of the DNA methylation levels of the 12 CpGs between normal prostate samples, prostate 

tumor and prostate tumor with metastases from GSE73549 and GSE38240. 

Annotations of the column of the heatmap indicate disease states of patients. 

These 12 Probes can Effectively Distinguish 
Metastatic Tumors From Normal Tissues 



Construction of the Probe-based Prognostic Classifier

Z-score distribution of the prognostic classifier and patient survival status

Methylation profile of the probes used 

by the prognostic classifier in patients

on 28 cancer types



Construction of the probe-based prognostic classifier. 

a The pipeline of feature selection for prognostic classifier.  b-h The result of Prognostic classifier for 7 cancer types 
Upper panel: Kaplan-Meier survival analysis for the patients in each of the 7 cancers

Middle panel: heatmap showing methylation of the CpGs used by the prognostic classifier in patients. 

. Lower panel: Z-score distribution of the prognostic classifier and patient survival status. 

The patients were divided into low-risk and high-risk groups using the median value of the partial hazard as cutoff. p-value were calculated by the log-rank test. 

The Performance of Probe-based Prognostic Classifier 



Conclusions

1. Methylation profiles of different cancers vary tremendously, which can be used 

to distinguish the cancer from normal as well as different cancer types. 

2. Results with independent validation datasets of various cancers demonstrate the 

performance and robustness of our DNAm site-based tumor-normal classifier.

3. Tumor-specific classifier can effectively distinguish different cancers. The 

DNAm markers for tumor-specific classifier can also be used to predict the 

origin of tumor with metastases or with unknown primary origin.

4. Prognostic classifier with DNAm pattern successfully divides patients into 

high-risk or low-risk group in different cancer types.

5. We identified potential diagnostic and prognostic biomarkers based on the 

methylation changes of DNAm patterns in diverse TCGA cancers, which have 

the potential application in clinical practices.
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